大鼠导管细胞分化成 Islet-Like 细胞

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2024-07-13 DOI:10.1007/7651_2024_558
Nazli Karimi, Gülbahar Boyuk Ozcan
{"title":"大鼠导管细胞分化成 Islet-Like 细胞","authors":"Nazli Karimi, Gülbahar Boyuk Ozcan","doi":"10.1007/7651_2024_558","DOIUrl":null,"url":null,"abstract":"<p><p>Regenerative medicine investigates the conversion of pancreatic ductal cells into functional islet cells, offering innovative treatments for conditions such as diabetes. Ductal cells, primarily supporting the pancreas' exocrine functions, can differentiate into various cell types, including islet cells, under specific conditions, opening new avenues in research and therapy. The outlined protocol elaborates on the conversion process, covering ductal cell differentiation induction, and insulin-producing capacity assessment. The primary objective is to address the shortage of insulin-secreting cells for transplantation, thereby advancing diabetes treatment methodologies.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rat Ductal Cell-Derived Differentiation into Islet-Like Cells.\",\"authors\":\"Nazli Karimi, Gülbahar Boyuk Ozcan\",\"doi\":\"10.1007/7651_2024_558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regenerative medicine investigates the conversion of pancreatic ductal cells into functional islet cells, offering innovative treatments for conditions such as diabetes. Ductal cells, primarily supporting the pancreas' exocrine functions, can differentiate into various cell types, including islet cells, under specific conditions, opening new avenues in research and therapy. The outlined protocol elaborates on the conversion process, covering ductal cell differentiation induction, and insulin-producing capacity assessment. The primary objective is to address the shortage of insulin-secreting cells for transplantation, thereby advancing diabetes treatment methodologies.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2024_558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

再生医学研究如何将胰腺导管细胞转化为功能性胰岛细胞,为糖尿病等疾病提供创新疗法。胰腺导管细胞主要支持胰腺的外分泌功能,在特定条件下可分化成包括胰岛细胞在内的各种细胞类型,为研究和治疗开辟了新途径。概述的方案详细介绍了转化过程,包括导管细胞分化诱导和胰岛素分泌能力评估。其主要目的是解决用于移植的胰岛素分泌细胞短缺的问题,从而推动糖尿病治疗方法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rat Ductal Cell-Derived Differentiation into Islet-Like Cells.

Regenerative medicine investigates the conversion of pancreatic ductal cells into functional islet cells, offering innovative treatments for conditions such as diabetes. Ductal cells, primarily supporting the pancreas' exocrine functions, can differentiate into various cell types, including islet cells, under specific conditions, opening new avenues in research and therapy. The outlined protocol elaborates on the conversion process, covering ductal cell differentiation induction, and insulin-producing capacity assessment. The primary objective is to address the shortage of insulin-secreting cells for transplantation, thereby advancing diabetes treatment methodologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
A Guideline Strategy for Identifying a Viral Gene/Protein Evading Antiviral Innate Immunity. A Guideline Strategy for Identifying Genes/Proteins Regulating Antiviral Innate Immunity. Application of Proteomics Technology Based on LC-MS Combined with Western Blotting and Co-IP in Antiviral Innate Immunity. Click Chemistry in Detecting Protein Modification. CRISPR-Mediated Construction of Gene-Knockout Mice for Investigating Antiviral Innate Immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1