揭示克里基中间体 CH2OO 与二氧化硫反应的新途径。

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Communications Chemistry Pub Date : 2024-07-13 DOI:10.1038/s42004-024-01237-9
Cangtao Yin, Gábor Czakó
{"title":"揭示克里基中间体 CH2OO 与二氧化硫反应的新途径。","authors":"Cangtao Yin, Gábor Czakó","doi":"10.1038/s42004-024-01237-9","DOIUrl":null,"url":null,"abstract":"Criegee intermediates play an important role in the tropospheric oxidation models through their reactions with atmospheric trace chemicals. We develop a global full-dimensional potential energy surface for the CH2OO + SO2 system and reveal how the reaction happens step by step by quasi-classical trajectory simulations. A new pathway forming the main products (CH2O + SO3) and a new product channel (CO2 + H2 + SO2) are predicted in our simulations. The new pathway appears at collision energies greater than 10 kcal/mol whose behavior demonstrates a typical barrier-controlled reaction. This threshold is also consistent with the ab initio transition state barrier height. For the minor products, a loose complex OCH2O ∙ ∙ ∙ SO2 is formed first, and then in most cases it soon turns into HCOOH + SO2, in a few cases it decomposes into CO2 + H2 + SO2 which is a new product channel, and rarely it remains as ∙OCH2O ∙ + SO2. Criegee intermediates such as CH2OO play an important role in tropospheric oxidation models through their reactions with atmospheric trace chemicals. Here, the authors develop a global full-dimensional potential energy surface for the CH2OO + SO2 system, reveal how the reaction happens step by step using quasi-classical trajectory simulations, to show a new direct stripping pathway forming the main products CH2O and SO3 and a new product channel.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246420/pdf/","citationCount":"0","resultStr":"{\"title\":\"Revealing new pathways for the reaction of Criegee intermediate CH2OO with SO2\",\"authors\":\"Cangtao Yin, Gábor Czakó\",\"doi\":\"10.1038/s42004-024-01237-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Criegee intermediates play an important role in the tropospheric oxidation models through their reactions with atmospheric trace chemicals. We develop a global full-dimensional potential energy surface for the CH2OO + SO2 system and reveal how the reaction happens step by step by quasi-classical trajectory simulations. A new pathway forming the main products (CH2O + SO3) and a new product channel (CO2 + H2 + SO2) are predicted in our simulations. The new pathway appears at collision energies greater than 10 kcal/mol whose behavior demonstrates a typical barrier-controlled reaction. This threshold is also consistent with the ab initio transition state barrier height. For the minor products, a loose complex OCH2O ∙ ∙ ∙ SO2 is formed first, and then in most cases it soon turns into HCOOH + SO2, in a few cases it decomposes into CO2 + H2 + SO2 which is a new product channel, and rarely it remains as ∙OCH2O ∙ + SO2. Criegee intermediates such as CH2OO play an important role in tropospheric oxidation models through their reactions with atmospheric trace chemicals. Here, the authors develop a global full-dimensional potential energy surface for the CH2OO + SO2 system, reveal how the reaction happens step by step using quasi-classical trajectory simulations, to show a new direct stripping pathway forming the main products CH2O and SO3 and a new product channel.\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246420/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s42004-024-01237-9\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01237-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

克里基中间体通过与大气中的痕量化学物质发生反应,在对流层氧化模型中发挥着重要作用。我们为 CH2OO + SO2 系统开发了一个全局全维势能面,并通过准经典轨迹模拟揭示了反应是如何一步步发生的。我们在模拟中预测了形成主要产物(CH2O + SO3)的新途径和新产物通道(CO2 + H2 + SO2)。新通道出现在碰撞能量大于 10 kcal/mol 的情况下,其行为表现为典型的势垒控制反应。这一阈值也与 ab initio 过渡态势垒高度相一致。对于次要产物,首先会形成一个松散的复合物 OCH2O ∙∙ ∙ SO2,然后在大多数情况下很快会变成 HCOOH + SO2,在少数情况下会分解成 CO2 + H2 + SO2,这是新的产物途径,而在极少数情况下会保持为 ∙OCH2O ∙ + SO2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revealing new pathways for the reaction of Criegee intermediate CH2OO with SO2
Criegee intermediates play an important role in the tropospheric oxidation models through their reactions with atmospheric trace chemicals. We develop a global full-dimensional potential energy surface for the CH2OO + SO2 system and reveal how the reaction happens step by step by quasi-classical trajectory simulations. A new pathway forming the main products (CH2O + SO3) and a new product channel (CO2 + H2 + SO2) are predicted in our simulations. The new pathway appears at collision energies greater than 10 kcal/mol whose behavior demonstrates a typical barrier-controlled reaction. This threshold is also consistent with the ab initio transition state barrier height. For the minor products, a loose complex OCH2O ∙ ∙ ∙ SO2 is formed first, and then in most cases it soon turns into HCOOH + SO2, in a few cases it decomposes into CO2 + H2 + SO2 which is a new product channel, and rarely it remains as ∙OCH2O ∙ + SO2. Criegee intermediates such as CH2OO play an important role in tropospheric oxidation models through their reactions with atmospheric trace chemicals. Here, the authors develop a global full-dimensional potential energy surface for the CH2OO + SO2 system, reveal how the reaction happens step by step using quasi-classical trajectory simulations, to show a new direct stripping pathway forming the main products CH2O and SO3 and a new product channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
期刊最新文献
Switchable protection and exposure of a sensitive squaraine dye within a redox active rotaxane. Women in Chemistry: Q&A with Dr Shira Joudan. Conditions for enhancement of gas phase chemical reactions inside a dark microwave cavity Machine learning analysis of a large set of homopolymers to predict glass transition temperatures Women in chemistry: Q&A with Professor Tricia Breen Carmichael
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1