Ömer Tarık Kavak, Şevket Gündüz, Cabir Vural, Necati Enver
{"title":"基于人工智能的脑沟诊断:通过深度学习评估视频旋转镜。","authors":"Ömer Tarık Kavak, Şevket Gündüz, Cabir Vural, Necati Enver","doi":"10.1007/s00405-024-08801-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a convolutional neural network (CNN)-based model for classifying videostroboscopic images of patients with sulcus, benign vocal fold (VF) lesions, and healthy VFs to improve clinicians' accuracy in diagnosis during videostroboscopies when evaluating sulcus.</p><p><strong>Materials and methods: </strong>Videostroboscopies of 433 individuals who were diagnosed with sulcus (91), who were diagnosed with benign VF diseases (i.e., polyp, nodule, papilloma, cyst, or pseudocyst [311]), or who were healthy (33) were analyzed. After extracting 91,159 frames from videostroboscopies, a CNN-based model was created and tested. The healthy and sulcus groups underwent binary classification. In the second phase of the study, benign VF lesions were added to the training set, and multiclassification was executed across all groups. The proposed CNN-based model results were compared with five laryngology experts' assessments.</p><p><strong>Results: </strong>In the binary classification phase, the CNN-based model achieved 98% accuracy, 98% recall, 97% precision, and a 97% F1 score for classifying sulcus and healthy VFs. During the multiclassification phase, when evaluated on a subset of frames encompassing all included groups, the CNN-based model demonstrated greater accuracy when compared with that of the five laryngologists (%76 versus 72%, 68%, 72%, 63%, and 72%).</p><p><strong>Conclusion: </strong>The utilization of a CNN-based model serves as a significant aid in the diagnosis of sulcus, a VF disease that presents notable challenges in the diagnostic process. Further research could be undertaken to assess the practicality of implementing this approach in real-time application in clinical practice.</p>","PeriodicalId":11952,"journal":{"name":"European Archives of Oto-Rhino-Laryngology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512876/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence based diagnosis of sulcus: assesment of videostroboscopy via deep learning.\",\"authors\":\"Ömer Tarık Kavak, Şevket Gündüz, Cabir Vural, Necati Enver\",\"doi\":\"10.1007/s00405-024-08801-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To develop a convolutional neural network (CNN)-based model for classifying videostroboscopic images of patients with sulcus, benign vocal fold (VF) lesions, and healthy VFs to improve clinicians' accuracy in diagnosis during videostroboscopies when evaluating sulcus.</p><p><strong>Materials and methods: </strong>Videostroboscopies of 433 individuals who were diagnosed with sulcus (91), who were diagnosed with benign VF diseases (i.e., polyp, nodule, papilloma, cyst, or pseudocyst [311]), or who were healthy (33) were analyzed. After extracting 91,159 frames from videostroboscopies, a CNN-based model was created and tested. The healthy and sulcus groups underwent binary classification. In the second phase of the study, benign VF lesions were added to the training set, and multiclassification was executed across all groups. The proposed CNN-based model results were compared with five laryngology experts' assessments.</p><p><strong>Results: </strong>In the binary classification phase, the CNN-based model achieved 98% accuracy, 98% recall, 97% precision, and a 97% F1 score for classifying sulcus and healthy VFs. During the multiclassification phase, when evaluated on a subset of frames encompassing all included groups, the CNN-based model demonstrated greater accuracy when compared with that of the five laryngologists (%76 versus 72%, 68%, 72%, 63%, and 72%).</p><p><strong>Conclusion: </strong>The utilization of a CNN-based model serves as a significant aid in the diagnosis of sulcus, a VF disease that presents notable challenges in the diagnostic process. Further research could be undertaken to assess the practicality of implementing this approach in real-time application in clinical practice.</p>\",\"PeriodicalId\":11952,\"journal\":{\"name\":\"European Archives of Oto-Rhino-Laryngology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Archives of Oto-Rhino-Laryngology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00405-024-08801-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"OTORHINOLARYNGOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Archives of Oto-Rhino-Laryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00405-024-08801-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
Artificial intelligence based diagnosis of sulcus: assesment of videostroboscopy via deep learning.
Purpose: To develop a convolutional neural network (CNN)-based model for classifying videostroboscopic images of patients with sulcus, benign vocal fold (VF) lesions, and healthy VFs to improve clinicians' accuracy in diagnosis during videostroboscopies when evaluating sulcus.
Materials and methods: Videostroboscopies of 433 individuals who were diagnosed with sulcus (91), who were diagnosed with benign VF diseases (i.e., polyp, nodule, papilloma, cyst, or pseudocyst [311]), or who were healthy (33) were analyzed. After extracting 91,159 frames from videostroboscopies, a CNN-based model was created and tested. The healthy and sulcus groups underwent binary classification. In the second phase of the study, benign VF lesions were added to the training set, and multiclassification was executed across all groups. The proposed CNN-based model results were compared with five laryngology experts' assessments.
Results: In the binary classification phase, the CNN-based model achieved 98% accuracy, 98% recall, 97% precision, and a 97% F1 score for classifying sulcus and healthy VFs. During the multiclassification phase, when evaluated on a subset of frames encompassing all included groups, the CNN-based model demonstrated greater accuracy when compared with that of the five laryngologists (%76 versus 72%, 68%, 72%, 63%, and 72%).
Conclusion: The utilization of a CNN-based model serves as a significant aid in the diagnosis of sulcus, a VF disease that presents notable challenges in the diagnostic process. Further research could be undertaken to assess the practicality of implementing this approach in real-time application in clinical practice.
期刊介绍:
Official Journal of
European Union of Medical Specialists – ORL Section and Board
Official Journal of Confederation of European Oto-Rhino-Laryngology Head and Neck Surgery
"European Archives of Oto-Rhino-Laryngology" publishes original clinical reports and clinically relevant experimental studies, as well as short communications presenting new results of special interest. With peer review by a respected international editorial board and prompt English-language publication, the journal provides rapid dissemination of information by authors from around the world. This particular feature makes it the journal of choice for readers who want to be informed about the continuing state of the art concerning basic sciences and the diagnosis and management of diseases of the head and neck on an international level.
European Archives of Oto-Rhino-Laryngology was founded in 1864 as "Archiv für Ohrenheilkunde" by A. von Tröltsch, A. Politzer and H. Schwartze.