{"title":"从感染了牛分枝杆菌的奶牛血浆中提取的外泌体蛋白质组概览。","authors":"Hangfan Zhou , Wenhui Wu , Qilong Zhang , Tao Zhang , Songhao Jiang , Lei Chang , Yuping Xie , Jiaqiang Zhu , Degang Zhou , Yao Zhang , Ping Xu","doi":"10.1016/j.tube.2024.102541","DOIUrl":null,"url":null,"abstract":"<div><p>Bovine tuberculosis (bTB), primarily caused by <em>Mycobacterium bovis</em> (<em>M. bovis</em>), is a globally zoonotic disease with significant economic impacts. Plasma exosomes have been extensively used for investigating disease processes and exploring biomarkers. While mass spectrometry (MS)-based proteomic analysis of plasma exosomes has been employed for human tuberculosis (TB) studies, it has not yet been applied to bTB. Therefore, a comprehensive proteomic overview of plasma exosomes from <em>M. bovis</em>-infected cows is essential. In this study, we presented an extensive proteomic analysis of plasma exosomes from 89 <em>M. bovis</em>-infected cows across three farms, using data dependent acquisition (DDA) mode. Our analysis encompasses 239,894 spectra, 6,011 peptides and 835 proteins. The proteomic overview revealed both consistencies and differences among individual cows, supplements 595 proteins to the bovine exosome library, and enriches tuberculosis and related pathways. Additionally, six pathways were validated as immune response pathways, and three proteins (CATHL1, H1-1, and LCN2) were identified as potential indicators of bTB. This study is the first to investigate the exosome proteome of plasma from cows infected with <em>M. bovis</em>, providing a valuable dataset for exploring candidate bTB markers and understanding the mechanisms of host defense against <em>M. bovis</em>.</p></div>","PeriodicalId":23383,"journal":{"name":"Tuberculosis","volume":"148 ","pages":"Article 102541"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteome overview of exosome derived from plasma of cows infected with Mycobacterium bovis\",\"authors\":\"Hangfan Zhou , Wenhui Wu , Qilong Zhang , Tao Zhang , Songhao Jiang , Lei Chang , Yuping Xie , Jiaqiang Zhu , Degang Zhou , Yao Zhang , Ping Xu\",\"doi\":\"10.1016/j.tube.2024.102541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bovine tuberculosis (bTB), primarily caused by <em>Mycobacterium bovis</em> (<em>M. bovis</em>), is a globally zoonotic disease with significant economic impacts. Plasma exosomes have been extensively used for investigating disease processes and exploring biomarkers. While mass spectrometry (MS)-based proteomic analysis of plasma exosomes has been employed for human tuberculosis (TB) studies, it has not yet been applied to bTB. Therefore, a comprehensive proteomic overview of plasma exosomes from <em>M. bovis</em>-infected cows is essential. In this study, we presented an extensive proteomic analysis of plasma exosomes from 89 <em>M. bovis</em>-infected cows across three farms, using data dependent acquisition (DDA) mode. Our analysis encompasses 239,894 spectra, 6,011 peptides and 835 proteins. The proteomic overview revealed both consistencies and differences among individual cows, supplements 595 proteins to the bovine exosome library, and enriches tuberculosis and related pathways. Additionally, six pathways were validated as immune response pathways, and three proteins (CATHL1, H1-1, and LCN2) were identified as potential indicators of bTB. This study is the first to investigate the exosome proteome of plasma from cows infected with <em>M. bovis</em>, providing a valuable dataset for exploring candidate bTB markers and understanding the mechanisms of host defense against <em>M. bovis</em>.</p></div>\",\"PeriodicalId\":23383,\"journal\":{\"name\":\"Tuberculosis\",\"volume\":\"148 \",\"pages\":\"Article 102541\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tuberculosis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1472979224000672\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tuberculosis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1472979224000672","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Proteome overview of exosome derived from plasma of cows infected with Mycobacterium bovis
Bovine tuberculosis (bTB), primarily caused by Mycobacterium bovis (M. bovis), is a globally zoonotic disease with significant economic impacts. Plasma exosomes have been extensively used for investigating disease processes and exploring biomarkers. While mass spectrometry (MS)-based proteomic analysis of plasma exosomes has been employed for human tuberculosis (TB) studies, it has not yet been applied to bTB. Therefore, a comprehensive proteomic overview of plasma exosomes from M. bovis-infected cows is essential. In this study, we presented an extensive proteomic analysis of plasma exosomes from 89 M. bovis-infected cows across three farms, using data dependent acquisition (DDA) mode. Our analysis encompasses 239,894 spectra, 6,011 peptides and 835 proteins. The proteomic overview revealed both consistencies and differences among individual cows, supplements 595 proteins to the bovine exosome library, and enriches tuberculosis and related pathways. Additionally, six pathways were validated as immune response pathways, and three proteins (CATHL1, H1-1, and LCN2) were identified as potential indicators of bTB. This study is the first to investigate the exosome proteome of plasma from cows infected with M. bovis, providing a valuable dataset for exploring candidate bTB markers and understanding the mechanisms of host defense against M. bovis.
期刊介绍:
Tuberculosis is a speciality journal focusing on basic experimental research on tuberculosis, notably on bacteriological, immunological and pathogenesis aspects of the disease. The journal publishes original research and reviews on the host response and immunology of tuberculosis and the molecular biology, genetics and physiology of the organism, however discourages submissions with a meta-analytical focus (for example, articles based on searches of published articles in public electronic databases, especially where there is lack of evidence of the personal involvement of authors in the generation of such material). We do not publish Clinical Case-Studies.
Areas on which submissions are welcomed include:
-Clinical TrialsDiagnostics-
Antimicrobial resistance-
Immunology-
Leprosy-
Microbiology, including microbial physiology-
Molecular epidemiology-
Non-tuberculous Mycobacteria-
Pathogenesis-
Pathology-
Vaccine development.
This Journal does not accept case-reports.
The resurgence of interest in tuberculosis has accelerated the pace of relevant research and Tuberculosis has grown with it, as the only journal dedicated to experimental biomedical research in tuberculosis.