根据水动力模型数据预测生态区:对基于自然的解决方案进行生态评估

Soesja Brunink , Gijs G. Hendrickx
{"title":"根据水动力模型数据预测生态区:对基于自然的解决方案进行生态评估","authors":"Soesja Brunink ,&nbsp;Gijs G. Hendrickx","doi":"10.1016/j.nbsj.2024.100145","DOIUrl":null,"url":null,"abstract":"<div><p>Estuaries worldwide are of substantial ecological value due to the presence of various gradients, such as salinity. Preserving the natural value of estuaries is vital for meeting the climate stabilization goals of the Paris Agreement. Recognizing nature as a stakeholder is imperative, given the surpassing value of ecosystem services over global gross domestic product. Quantifying the current ecological state and future ecological shifts faces challenges, including variable dependencies, spatial-temporal disparities, and the limitations in available information. This study introduces EMMA (Ecotope-Map Maker for Abiotics), a method for quantifying the effects of human interventions or climate change scenarios on estuarine ecosystems by linking abiotic characteristics derived from a hydrodynamic model to ecotopes. The Western Scheldt, an estuary connecting the Scheldt river to the North Sea in the Netherlands, serves as a case study. The method successfully reproduced an existing ecotope-map, which is dependent on real-time data such as aerial photographs. The developed method not only proves applicable in assessing the current ecological state and future ecological shifts for hypothetical scenarios but also demonstrates utility in predicting future situations, providing valuable insights for decision-makers in estuarine ecosystem management and contributing to climate and environmental preservation goals.</p></div>","PeriodicalId":100945,"journal":{"name":"Nature-Based Solutions","volume":"6 ","pages":"Article 100145"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772411524000363/pdfft?md5=bf479f23038742318e5844f29e45579c&pid=1-s2.0-S2772411524000363-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting ecotopes from hydrodynamic model data: Towards an ecological assessment of nature-based solutions\",\"authors\":\"Soesja Brunink ,&nbsp;Gijs G. Hendrickx\",\"doi\":\"10.1016/j.nbsj.2024.100145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Estuaries worldwide are of substantial ecological value due to the presence of various gradients, such as salinity. Preserving the natural value of estuaries is vital for meeting the climate stabilization goals of the Paris Agreement. Recognizing nature as a stakeholder is imperative, given the surpassing value of ecosystem services over global gross domestic product. Quantifying the current ecological state and future ecological shifts faces challenges, including variable dependencies, spatial-temporal disparities, and the limitations in available information. This study introduces EMMA (Ecotope-Map Maker for Abiotics), a method for quantifying the effects of human interventions or climate change scenarios on estuarine ecosystems by linking abiotic characteristics derived from a hydrodynamic model to ecotopes. The Western Scheldt, an estuary connecting the Scheldt river to the North Sea in the Netherlands, serves as a case study. The method successfully reproduced an existing ecotope-map, which is dependent on real-time data such as aerial photographs. The developed method not only proves applicable in assessing the current ecological state and future ecological shifts for hypothetical scenarios but also demonstrates utility in predicting future situations, providing valuable insights for decision-makers in estuarine ecosystem management and contributing to climate and environmental preservation goals.</p></div>\",\"PeriodicalId\":100945,\"journal\":{\"name\":\"Nature-Based Solutions\",\"volume\":\"6 \",\"pages\":\"Article 100145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772411524000363/pdfft?md5=bf479f23038742318e5844f29e45579c&pid=1-s2.0-S2772411524000363-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature-Based Solutions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772411524000363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature-Based Solutions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772411524000363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于存在盐度等各种梯度,世界各地的河口都具有重要的生态价值。保护河口的自然价值对于实现《巴黎协定》的气候稳定目标至关重要。鉴于生态系统服务的价值超过了全球国内生产总值,将自然视为利益相关者势在必行。量化当前的生态状态和未来的生态变化面临着各种挑战,包括变量依赖性、时空差异以及可用信息的局限性。本研究介绍了 EMMA(非生物生态位图绘制工具),这是一种通过将水动力模型得出的非生物特征与生态位联系起来,量化人类干预或气候变化情景对河口生态系统影响的方法。西斯海尔德河是连接荷兰斯海尔德河与北海的一个河口,该河口就是一个案例研究。该方法成功地再现了现有的生态图谱,该图谱依赖于航空照片等实时数据。事实证明,所开发的方法不仅适用于评估当前的生态状况和假设情景下未来的生态变化,而且在预测未来情况方面也很实用,为河口生态系统管理决策者提供了宝贵的见解,并有助于实现气候和环境保护目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting ecotopes from hydrodynamic model data: Towards an ecological assessment of nature-based solutions

Estuaries worldwide are of substantial ecological value due to the presence of various gradients, such as salinity. Preserving the natural value of estuaries is vital for meeting the climate stabilization goals of the Paris Agreement. Recognizing nature as a stakeholder is imperative, given the surpassing value of ecosystem services over global gross domestic product. Quantifying the current ecological state and future ecological shifts faces challenges, including variable dependencies, spatial-temporal disparities, and the limitations in available information. This study introduces EMMA (Ecotope-Map Maker for Abiotics), a method for quantifying the effects of human interventions or climate change scenarios on estuarine ecosystems by linking abiotic characteristics derived from a hydrodynamic model to ecotopes. The Western Scheldt, an estuary connecting the Scheldt river to the North Sea in the Netherlands, serves as a case study. The method successfully reproduced an existing ecotope-map, which is dependent on real-time data such as aerial photographs. The developed method not only proves applicable in assessing the current ecological state and future ecological shifts for hypothetical scenarios but also demonstrates utility in predicting future situations, providing valuable insights for decision-makers in estuarine ecosystem management and contributing to climate and environmental preservation goals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of compost and compost-derived biochar on the growth of lettuce irrigated with water and treated wastewater Time in and for nature-based solutions. No quick fix solutions for complex ecological and social processes Numerical modelling of the hydrodynamics driven by tidal flooding of the land surface after dyke breaching Nature-based solutions for climate change adaptation and resilience in urban informal settlements: Insights from kibera, kenya and Villa 20, Argentina A basic study on tree growth and landscape greening in Coastal Urban areas: The case of Hakata port in Fukuoka City, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1