Hideyuki Hatakeyama, Masayo Morishita, Aya Hasan Alshammari, Umbhorn Ungkulpasvich, Junichi Yamaguchi, Takaaki Hirotsu, Eric di Luccio
{"title":"利用秀丽隐杆线虫对多种癌症类型进行早期检测的无创筛查方法:前瞻性临床研究","authors":"Hideyuki Hatakeyama, Masayo Morishita, Aya Hasan Alshammari, Umbhorn Ungkulpasvich, Junichi Yamaguchi, Takaaki Hirotsu, Eric di Luccio","doi":"10.1016/j.bbrep.2024.101778","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer is the second leading cause of death worldwide, according to the World Health Organization, surpassed only by cardiovascular diseases. Early identification and intervention can significantly improve outcomes. However, finding a universal, non-invasive, economical, and precise method for early cancer detection remains a significant challenge. This study explores the efficacy of an innovative cancer detection test, N-NOSE, leveraging a <em>Caenorhabditis elegans</em> olfactory assay on urine samples across a diverse patient group exceeding 1600 individuals diagnosed with various cancers, with samples from the Shikoku Cancer Center (Ehime, Japan) under approved ethical standards. Current cancer screening techniques often require invasive procedures, can be painful or complex, with poor performance, and might be prohibitively costly, limiting accessibility for many. N-NOSE addresses these challenges head-on by offering a test based on urine analysis, eliminating the need for invasive methods, and being more affordable with higher performance at early stages than extensive blood tests or comprehensive body scans for cancer detection. In this study, N-NOSE demonstrated a capability to accurately identify upwards of 20 cancer types, achieving detection sensitivities between 60 and 90 %, including initial-stage cancers. The findings robustly advocate for N-NOSE's potential as a revolutionary, cost-effective, and minimally invasive strategy for broad-spectrum early cancer detection. It is also particularly significant in low- and middle-income countries with limited access to advanced cancer diagnostic methods, which may contribute to the improved outcome of affected individuals.</p></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"39 ","pages":"Article 101778"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405580824001420/pdfft?md5=18e443a3dfdb619c80d3262d64c2803d&pid=1-s2.0-S2405580824001420-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A non-invasive screening method using Caenorhabditis elegans for early detection of multiple cancer types: A prospective clinical study\",\"authors\":\"Hideyuki Hatakeyama, Masayo Morishita, Aya Hasan Alshammari, Umbhorn Ungkulpasvich, Junichi Yamaguchi, Takaaki Hirotsu, Eric di Luccio\",\"doi\":\"10.1016/j.bbrep.2024.101778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cancer is the second leading cause of death worldwide, according to the World Health Organization, surpassed only by cardiovascular diseases. Early identification and intervention can significantly improve outcomes. However, finding a universal, non-invasive, economical, and precise method for early cancer detection remains a significant challenge. This study explores the efficacy of an innovative cancer detection test, N-NOSE, leveraging a <em>Caenorhabditis elegans</em> olfactory assay on urine samples across a diverse patient group exceeding 1600 individuals diagnosed with various cancers, with samples from the Shikoku Cancer Center (Ehime, Japan) under approved ethical standards. Current cancer screening techniques often require invasive procedures, can be painful or complex, with poor performance, and might be prohibitively costly, limiting accessibility for many. N-NOSE addresses these challenges head-on by offering a test based on urine analysis, eliminating the need for invasive methods, and being more affordable with higher performance at early stages than extensive blood tests or comprehensive body scans for cancer detection. In this study, N-NOSE demonstrated a capability to accurately identify upwards of 20 cancer types, achieving detection sensitivities between 60 and 90 %, including initial-stage cancers. The findings robustly advocate for N-NOSE's potential as a revolutionary, cost-effective, and minimally invasive strategy for broad-spectrum early cancer detection. It is also particularly significant in low- and middle-income countries with limited access to advanced cancer diagnostic methods, which may contribute to the improved outcome of affected individuals.</p></div>\",\"PeriodicalId\":8771,\"journal\":{\"name\":\"Biochemistry and Biophysics Reports\",\"volume\":\"39 \",\"pages\":\"Article 101778\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405580824001420/pdfft?md5=18e443a3dfdb619c80d3262d64c2803d&pid=1-s2.0-S2405580824001420-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Biophysics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405580824001420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580824001420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A non-invasive screening method using Caenorhabditis elegans for early detection of multiple cancer types: A prospective clinical study
Cancer is the second leading cause of death worldwide, according to the World Health Organization, surpassed only by cardiovascular diseases. Early identification and intervention can significantly improve outcomes. However, finding a universal, non-invasive, economical, and precise method for early cancer detection remains a significant challenge. This study explores the efficacy of an innovative cancer detection test, N-NOSE, leveraging a Caenorhabditis elegans olfactory assay on urine samples across a diverse patient group exceeding 1600 individuals diagnosed with various cancers, with samples from the Shikoku Cancer Center (Ehime, Japan) under approved ethical standards. Current cancer screening techniques often require invasive procedures, can be painful or complex, with poor performance, and might be prohibitively costly, limiting accessibility for many. N-NOSE addresses these challenges head-on by offering a test based on urine analysis, eliminating the need for invasive methods, and being more affordable with higher performance at early stages than extensive blood tests or comprehensive body scans for cancer detection. In this study, N-NOSE demonstrated a capability to accurately identify upwards of 20 cancer types, achieving detection sensitivities between 60 and 90 %, including initial-stage cancers. The findings robustly advocate for N-NOSE's potential as a revolutionary, cost-effective, and minimally invasive strategy for broad-spectrum early cancer detection. It is also particularly significant in low- and middle-income countries with limited access to advanced cancer diagnostic methods, which may contribute to the improved outcome of affected individuals.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.