{"title":"具有非全局利普齐兹连续系数的随机奇异初值问题的驯服欧拉-丸山方法的强收敛性","authors":"Yan Li, Nan Deng, Wanrong Cao","doi":"10.1016/j.apnum.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>In our previous works <span>[1]</span> and <span>[2]</span>, we delved into numerical methods for solving stochastic singular initial value problems (SSIVPs) that involve coefficients satisfying the global Lipschitz condition. The paper addresses the limitations of our previous work by introducing an explicit method, called the tamed Euler-Maruyama method, for numerically solving SSIVPs with non-globally Lipschitz continuous coefficients, which is both easy-to-implement and exceptionally efficient. We prove the existence and uniqueness theorem and the boundedness of the moments of the solution to SSIVPs under the non-globally Lipschitz condition. Moreover, we provide a sharp analysis of the strong convergence of the proposed method, along with the uniform boundedness of numerical solutions. We also apply our results to the stochastic singular Ginzburg-Landau system and provide numerical simulations to illustrate our theoretical findings.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"205 ","pages":"Pages 60-86"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong convergence of the tamed Euler-Maruyama method for stochastic singular initial value problems with non-globally Lipschitz continuous coefficients\",\"authors\":\"Yan Li, Nan Deng, Wanrong Cao\",\"doi\":\"10.1016/j.apnum.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In our previous works <span>[1]</span> and <span>[2]</span>, we delved into numerical methods for solving stochastic singular initial value problems (SSIVPs) that involve coefficients satisfying the global Lipschitz condition. The paper addresses the limitations of our previous work by introducing an explicit method, called the tamed Euler-Maruyama method, for numerically solving SSIVPs with non-globally Lipschitz continuous coefficients, which is both easy-to-implement and exceptionally efficient. We prove the existence and uniqueness theorem and the boundedness of the moments of the solution to SSIVPs under the non-globally Lipschitz condition. Moreover, we provide a sharp analysis of the strong convergence of the proposed method, along with the uniform boundedness of numerical solutions. We also apply our results to the stochastic singular Ginzburg-Landau system and provide numerical simulations to illustrate our theoretical findings.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"205 \",\"pages\":\"Pages 60-86\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001739\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001739","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Strong convergence of the tamed Euler-Maruyama method for stochastic singular initial value problems with non-globally Lipschitz continuous coefficients
In our previous works [1] and [2], we delved into numerical methods for solving stochastic singular initial value problems (SSIVPs) that involve coefficients satisfying the global Lipschitz condition. The paper addresses the limitations of our previous work by introducing an explicit method, called the tamed Euler-Maruyama method, for numerically solving SSIVPs with non-globally Lipschitz continuous coefficients, which is both easy-to-implement and exceptionally efficient. We prove the existence and uniqueness theorem and the boundedness of the moments of the solution to SSIVPs under the non-globally Lipschitz condition. Moreover, we provide a sharp analysis of the strong convergence of the proposed method, along with the uniform boundedness of numerical solutions. We also apply our results to the stochastic singular Ginzburg-Landau system and provide numerical simulations to illustrate our theoretical findings.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.