相场非线性梯度系统的能量谱元时间行进方法

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Applied Numerical Mathematics Pub Date : 2024-06-27 DOI:10.1016/j.apnum.2024.06.021
Shiqin Liu , Haijun Yu
{"title":"相场非线性梯度系统的能量谱元时间行进方法","authors":"Shiqin Liu ,&nbsp;Haijun Yu","doi":"10.1016/j.apnum.2024.06.021","DOIUrl":null,"url":null,"abstract":"<div><p>We propose two efficient energetic spectral-element methods in time for marching nonlinear gradient systems with the phase-field Allen–Cahn equation as an example: one fully implicit nonlinear method and one semi-implicit linear method. Different from other spectral methods in time using spectral Petrov-Galerkin or weighted Galerkin approximations, the presented implicit method employs an energetic variational Galerkin form that can maintain the mass conservation and energy dissipation property of the continuous dynamical system. Another advantage of this method is its superconvergence. A high-order extrapolation is adopted for the nonlinear term to get the semi-implicit method. The semi-implicit method does not have superconvergence, but can be improved by a few Picard-like iterations to recover the superconvergence of the implicit method. Numerical experiments verify that the method using Legendre elements of degree three outperforms the 4th-order implicit-explicit backward differentiation formula and the 4th-order exponential time difference Runge-Kutta method, which were known to have best performances in solving phase-field equations. In addition to the standard Allen–Cahn equation, we also apply the method to a conservative Allen–Cahn equation, in which the conservation of discrete total mass is verified. The applications of the proposed methods are not limited to phase-field Allen–Cahn equations. They are suitable for solving general, large-scale nonlinear dynamical systems.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"205 ","pages":"Pages 38-59"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energetic spectral-element time marching methods for phase-field nonlinear gradient systems\",\"authors\":\"Shiqin Liu ,&nbsp;Haijun Yu\",\"doi\":\"10.1016/j.apnum.2024.06.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose two efficient energetic spectral-element methods in time for marching nonlinear gradient systems with the phase-field Allen–Cahn equation as an example: one fully implicit nonlinear method and one semi-implicit linear method. Different from other spectral methods in time using spectral Petrov-Galerkin or weighted Galerkin approximations, the presented implicit method employs an energetic variational Galerkin form that can maintain the mass conservation and energy dissipation property of the continuous dynamical system. Another advantage of this method is its superconvergence. A high-order extrapolation is adopted for the nonlinear term to get the semi-implicit method. The semi-implicit method does not have superconvergence, but can be improved by a few Picard-like iterations to recover the superconvergence of the implicit method. Numerical experiments verify that the method using Legendre elements of degree three outperforms the 4th-order implicit-explicit backward differentiation formula and the 4th-order exponential time difference Runge-Kutta method, which were known to have best performances in solving phase-field equations. In addition to the standard Allen–Cahn equation, we also apply the method to a conservative Allen–Cahn equation, in which the conservation of discrete total mass is verified. The applications of the proposed methods are not limited to phase-field Allen–Cahn equations. They are suitable for solving general, large-scale nonlinear dynamical systems.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"205 \",\"pages\":\"Pages 38-59\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001697\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001697","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们以相场 Allen-Cahn 方程为例,针对行进非线性梯度系统提出了两种高效的时间谱元方法:一种是全隐式非线性方法,另一种是半隐式线性方法。与其他使用频谱 Petrov-Galerkin 或加权 Galerkin 近似的时间频谱方法不同,本文介绍的隐式方法采用了一种能量变分 Galerkin 形式,可以保持连续动力系统的质量守恒和能量耗散特性。该方法的另一个优点是其超收敛性。对非线性项采用高阶外推法得到半隐式方法。半隐式方法不具有超收敛性,但可以通过几次类似皮卡尔迭代的改进来恢复隐式方法的超收敛性。数值实验证明,使用三阶 Legendre 元素的方法优于四阶隐式-显式反向微分公式和四阶指数时差 Runge-Kutta 方法,而这两种方法在求解相场方程时性能最佳。除了标准 Allen-Cahn 方程,我们还将该方法应用于保守 Allen-Cahn 方程,其中离散总质量守恒得到了验证。所提方法的应用不仅限于相场 Allen-Cahn 方程。它们适用于求解一般的大规模非线性动力学系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energetic spectral-element time marching methods for phase-field nonlinear gradient systems

We propose two efficient energetic spectral-element methods in time for marching nonlinear gradient systems with the phase-field Allen–Cahn equation as an example: one fully implicit nonlinear method and one semi-implicit linear method. Different from other spectral methods in time using spectral Petrov-Galerkin or weighted Galerkin approximations, the presented implicit method employs an energetic variational Galerkin form that can maintain the mass conservation and energy dissipation property of the continuous dynamical system. Another advantage of this method is its superconvergence. A high-order extrapolation is adopted for the nonlinear term to get the semi-implicit method. The semi-implicit method does not have superconvergence, but can be improved by a few Picard-like iterations to recover the superconvergence of the implicit method. Numerical experiments verify that the method using Legendre elements of degree three outperforms the 4th-order implicit-explicit backward differentiation formula and the 4th-order exponential time difference Runge-Kutta method, which were known to have best performances in solving phase-field equations. In addition to the standard Allen–Cahn equation, we also apply the method to a conservative Allen–Cahn equation, in which the conservation of discrete total mass is verified. The applications of the proposed methods are not limited to phase-field Allen–Cahn equations. They are suitable for solving general, large-scale nonlinear dynamical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
期刊最新文献
An adaptive DtN-FEM for the scattering problem from orthotropic media New adaptive low-dissipation central-upwind schemes A priori error estimates for a coseismic slip optimal control problem A local discontinuous Galerkin methods with local Lax-Friedrichs flux and modified central flux for one dimensional nonlinear convection-diffusion equation Mixed finite elements of higher-order in elastoplasticity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1