Tereza Topkova , Stanislav Pleninger , Jakub Hospodka , Jakub Kraus
{"title":"利用基于规则的模型和梯度提升回归组合评估 DME 网络能力","authors":"Tereza Topkova , Stanislav Pleninger , Jakub Hospodka , Jakub Kraus","doi":"10.1016/j.jairtraman.2024.102637","DOIUrl":null,"url":null,"abstract":"<div><p>The future development of aeronautical navigation foresees an infrastructure rationalization of radionavigation aids with the aim of maintaining only the Minimum Operational Network, which brings benefits in terms of operational cost savings, promotes sustainability and optimal use of the radio spectrum. To ensure that the necessary navigation performance is preserved, the Distance Measuring Equipment (DME) plays a significant role, as DME/DME navigation is a short-term contingency solution when Global Navigation Satellite System is unavailable. Therefore, new DME ground stations are put into operation even though other navigation aids are being decommissioned at the same time. This paper addresses a question of possible DME network rationalization by developing a software model using a combination of a rule-based model, approximating of airborne DME interrogators interacting with DME ground transponders, with the implementation of the Gradient Boosting Regression to predict load of DME ground stations. The model is validated by comparing the results with the real load data obtained from an Air Navigation Service Provider. Several test cases are performed to evaluate the capability of the European DME network, simulating a reduction in the number of en-route DME stations and increases in air traffic using clustering methods. The results show that the ground station load limit was rarely reached, demonstrating the robustness and the potential for rationalization of the DME infrastructure.</p></div>","PeriodicalId":14925,"journal":{"name":"Journal of Air Transport Management","volume":"119 ","pages":"Article 102637"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0969699724001029/pdfft?md5=aebed64e6fea9015bb9fee0ae5067a18&pid=1-s2.0-S0969699724001029-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluation of DME network capability using combination of rule-based model and gradient boosting regression\",\"authors\":\"Tereza Topkova , Stanislav Pleninger , Jakub Hospodka , Jakub Kraus\",\"doi\":\"10.1016/j.jairtraman.2024.102637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The future development of aeronautical navigation foresees an infrastructure rationalization of radionavigation aids with the aim of maintaining only the Minimum Operational Network, which brings benefits in terms of operational cost savings, promotes sustainability and optimal use of the radio spectrum. To ensure that the necessary navigation performance is preserved, the Distance Measuring Equipment (DME) plays a significant role, as DME/DME navigation is a short-term contingency solution when Global Navigation Satellite System is unavailable. Therefore, new DME ground stations are put into operation even though other navigation aids are being decommissioned at the same time. This paper addresses a question of possible DME network rationalization by developing a software model using a combination of a rule-based model, approximating of airborne DME interrogators interacting with DME ground transponders, with the implementation of the Gradient Boosting Regression to predict load of DME ground stations. The model is validated by comparing the results with the real load data obtained from an Air Navigation Service Provider. Several test cases are performed to evaluate the capability of the European DME network, simulating a reduction in the number of en-route DME stations and increases in air traffic using clustering methods. The results show that the ground station load limit was rarely reached, demonstrating the robustness and the potential for rationalization of the DME infrastructure.</p></div>\",\"PeriodicalId\":14925,\"journal\":{\"name\":\"Journal of Air Transport Management\",\"volume\":\"119 \",\"pages\":\"Article 102637\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0969699724001029/pdfft?md5=aebed64e6fea9015bb9fee0ae5067a18&pid=1-s2.0-S0969699724001029-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Air Transport Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969699724001029\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Air Transport Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969699724001029","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Evaluation of DME network capability using combination of rule-based model and gradient boosting regression
The future development of aeronautical navigation foresees an infrastructure rationalization of radionavigation aids with the aim of maintaining only the Minimum Operational Network, which brings benefits in terms of operational cost savings, promotes sustainability and optimal use of the radio spectrum. To ensure that the necessary navigation performance is preserved, the Distance Measuring Equipment (DME) plays a significant role, as DME/DME navigation is a short-term contingency solution when Global Navigation Satellite System is unavailable. Therefore, new DME ground stations are put into operation even though other navigation aids are being decommissioned at the same time. This paper addresses a question of possible DME network rationalization by developing a software model using a combination of a rule-based model, approximating of airborne DME interrogators interacting with DME ground transponders, with the implementation of the Gradient Boosting Regression to predict load of DME ground stations. The model is validated by comparing the results with the real load data obtained from an Air Navigation Service Provider. Several test cases are performed to evaluate the capability of the European DME network, simulating a reduction in the number of en-route DME stations and increases in air traffic using clustering methods. The results show that the ground station load limit was rarely reached, demonstrating the robustness and the potential for rationalization of the DME infrastructure.
期刊介绍:
The Journal of Air Transport Management (JATM) sets out to address, through high quality research articles and authoritative commentary, the major economic, management and policy issues facing the air transport industry today. It offers practitioners and academics an international and dynamic forum for analysis and discussion of these issues, linking research and practice and stimulating interaction between the two. The refereed papers in the journal cover all the major sectors of the industry (airlines, airports, air traffic management) as well as related areas such as tourism management and logistics. Papers are blind reviewed, normally by two referees, chosen for their specialist knowledge. The journal provides independent, original and rigorous analysis in the areas of: • Policy, regulation and law • Strategy • Operations • Marketing • Economics and finance • Sustainability