Ryota Tanaka, Kenji Tamao, Mana Ono, Seiya Yamayoshi, Yoshihiro Kawaoka, Masayuki Su'etsugu, Hiroyuki Noji, Kazuhito V. Tabata
{"title":"基于反向遗传学系统的用于病毒颗粒合成的流感病毒基因组体外一次性构建技术","authors":"Ryota Tanaka, Kenji Tamao, Mana Ono, Seiya Yamayoshi, Yoshihiro Kawaoka, Masayuki Su'etsugu, Hiroyuki Noji, Kazuhito V. Tabata","doi":"10.1101/2024.07.12.603202","DOIUrl":null,"url":null,"abstract":"The reverse genetics system, which allows the generation of influenza viruses from plasmids encoding viral genome, is a powerful tool for basic research on viral infection mechanisms and application research such as vaccine development. However, conventional plasmid construction using Escherichia coli (E. coli) cloning is time-consuming and has difficulties handling DNA encoding genes toxic for E. coli or highly repeated sequences. These limitations hamper rapid virus synthesis. In this study, we establish a very rapid in vitro one-pot plasmid construction (IVOC) based virus synthesis. This method dramatically reduced the time for genome plasmid construction, which was used for virus synthesis, from several days or more to about 8 hours. Moreover, infectious viruses could be synthesized with a similar yield to the conventional E. coli cloning-based method with high accuracy. The applicability of this method was also demonstrated by the generation of recombinant viruses carrying reporter genes from the IVOC products. This method is expected to potentially advance further understanding of influenza viruses and apply to other RNA viruses.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro one-pot construction of influenza viral genomes for virus particle synthesis based on reverse genetics system\",\"authors\":\"Ryota Tanaka, Kenji Tamao, Mana Ono, Seiya Yamayoshi, Yoshihiro Kawaoka, Masayuki Su'etsugu, Hiroyuki Noji, Kazuhito V. Tabata\",\"doi\":\"10.1101/2024.07.12.603202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reverse genetics system, which allows the generation of influenza viruses from plasmids encoding viral genome, is a powerful tool for basic research on viral infection mechanisms and application research such as vaccine development. However, conventional plasmid construction using Escherichia coli (E. coli) cloning is time-consuming and has difficulties handling DNA encoding genes toxic for E. coli or highly repeated sequences. These limitations hamper rapid virus synthesis. In this study, we establish a very rapid in vitro one-pot plasmid construction (IVOC) based virus synthesis. This method dramatically reduced the time for genome plasmid construction, which was used for virus synthesis, from several days or more to about 8 hours. Moreover, infectious viruses could be synthesized with a similar yield to the conventional E. coli cloning-based method with high accuracy. The applicability of this method was also demonstrated by the generation of recombinant viruses carrying reporter genes from the IVOC products. This method is expected to potentially advance further understanding of influenza viruses and apply to other RNA viruses.\",\"PeriodicalId\":501408,\"journal\":{\"name\":\"bioRxiv - Synthetic Biology\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.12.603202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.12.603202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
反向遗传学系统可从编码病毒基因组的质粒中产生流感病毒,是病毒感染机制基础研究和疫苗开发等应用研究的有力工具。然而,使用大肠杆菌(E. coli)克隆构建质粒的传统方法非常耗时,而且难以处理对大肠杆菌有毒的基因编码 DNA 或高度重复的序列。这些限制妨碍了病毒的快速合成。在这项研究中,我们建立了一种非常快速的基于体外单锅质粒构建(IVOC)的病毒合成方法。这种方法将用于病毒合成的基因组质粒构建时间从数天或更长时间大幅缩短至约 8 小时。此外,感染性病毒的合成产量与传统的基于大肠杆菌克隆的方法相近,且准确度高。从 IVOC 产物中生成携带报告基因的重组病毒也证明了这种方法的适用性。这种方法有望进一步加深人们对流感病毒的了解,并适用于其他 RNA 病毒。
In vitro one-pot construction of influenza viral genomes for virus particle synthesis based on reverse genetics system
The reverse genetics system, which allows the generation of influenza viruses from plasmids encoding viral genome, is a powerful tool for basic research on viral infection mechanisms and application research such as vaccine development. However, conventional plasmid construction using Escherichia coli (E. coli) cloning is time-consuming and has difficulties handling DNA encoding genes toxic for E. coli or highly repeated sequences. These limitations hamper rapid virus synthesis. In this study, we establish a very rapid in vitro one-pot plasmid construction (IVOC) based virus synthesis. This method dramatically reduced the time for genome plasmid construction, which was used for virus synthesis, from several days or more to about 8 hours. Moreover, infectious viruses could be synthesized with a similar yield to the conventional E. coli cloning-based method with high accuracy. The applicability of this method was also demonstrated by the generation of recombinant viruses carrying reporter genes from the IVOC products. This method is expected to potentially advance further understanding of influenza viruses and apply to other RNA viruses.