图像因素对眼科超声深度学习模型性能的影响

IF 5.6 4区 医学 Q1 ENGINEERING, BIOMEDICAL Irbm Pub Date : 2024-07-08 DOI:10.1016/j.irbm.2024.100848
Zemeng Li , Xiaochun Wang , Shuyang Wang , You Zhou , Xinqi Yu , Jianjun Ji , Jun Yang , Song Lin , Sheng Zhou
{"title":"图像因素对眼科超声深度学习模型性能的影响","authors":"Zemeng Li ,&nbsp;Xiaochun Wang ,&nbsp;Shuyang Wang ,&nbsp;You Zhou ,&nbsp;Xinqi Yu ,&nbsp;Jianjun Ji ,&nbsp;Jun Yang ,&nbsp;Song Lin ,&nbsp;Sheng Zhou","doi":"10.1016/j.irbm.2024.100848","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>This study aims to evaluate the impact of image factors on the performance of deep learning models used for ophthalmic ultrasound image diagnosis.</p></div><div><h3>Methods</h3><p>A total of 3,373 ophthalmic ultrasound images are used to deeply evaluate the influence of image factors on the performance of deep learning classification models. Inceptionv3, Xception, and the fusion model Inceptionv3-Xception are used to explore how brightness, contrast, gain, noise, size, format, pseudo-color seven image-related factors affect the classification performance of the model.</p></div><div><h3>Results</h3><p>Inceptionv3-Xception has advantages in the recognition accuracy of various image factors. When the image brightness changes, the model's performance shows a downward trend (0.5 vs. 1 vs. 1.8, ACC 95.73 vs. 97.06 vs. 93.54, P &lt; 0.05). When the image contrast changes, the model's performance is comparable (0.5 vs. 1 vs. 1.2, ACC 96.23 vs. 96.95 vs. 97.45, P &gt; 0.05). When the image gain drops to 50 dB, the model's accuracy decreases significantly (50 dB vs. 105 dB, ACC 96.49 vs. 97.57, P &lt; 0.05). When Gaussian noise is added to the image, the model's performance gradually decreases (0.02 vs. 0, ACC 89.48vs97.06, P &lt; 0.05). When the image size drops to 25% of the original image, the model's performance decreases significantly (25% vs. 100%, ACC 93.18 vs. 97.06, P &lt; 0.01). When the image format changes, the model's recognition accuracy is similar (JPG vs. BMP vs. PNG, ACC 96.98 vs. 97.06 vs. 97.06, P &gt; 0.05). The accuracy of the model in recognizing pseudo-color images decreases significantly compared to grayscale images (grayscale vs. pseudo-color, ACC 35.96 vs. 97.06).</p></div><div><h3>Conclusion</h3><p>These results indicate that image quality greatly influences the model training process, and acquiring high-quality images is an important prerequisite for high recognition performance of the model. This study offers valuable insights for the improvement of other robust deep learning models for ophthalmic ultrasound image recognition.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 4","pages":"Article 100848"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1959031824000290/pdfft?md5=d2db3fd118a09a6347da8a8332f055bd&pid=1-s2.0-S1959031824000290-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of Image Factors on the Performance of Ophthalmic Ultrasound Deep Learning Model\",\"authors\":\"Zemeng Li ,&nbsp;Xiaochun Wang ,&nbsp;Shuyang Wang ,&nbsp;You Zhou ,&nbsp;Xinqi Yu ,&nbsp;Jianjun Ji ,&nbsp;Jun Yang ,&nbsp;Song Lin ,&nbsp;Sheng Zhou\",\"doi\":\"10.1016/j.irbm.2024.100848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>This study aims to evaluate the impact of image factors on the performance of deep learning models used for ophthalmic ultrasound image diagnosis.</p></div><div><h3>Methods</h3><p>A total of 3,373 ophthalmic ultrasound images are used to deeply evaluate the influence of image factors on the performance of deep learning classification models. Inceptionv3, Xception, and the fusion model Inceptionv3-Xception are used to explore how brightness, contrast, gain, noise, size, format, pseudo-color seven image-related factors affect the classification performance of the model.</p></div><div><h3>Results</h3><p>Inceptionv3-Xception has advantages in the recognition accuracy of various image factors. When the image brightness changes, the model's performance shows a downward trend (0.5 vs. 1 vs. 1.8, ACC 95.73 vs. 97.06 vs. 93.54, P &lt; 0.05). When the image contrast changes, the model's performance is comparable (0.5 vs. 1 vs. 1.2, ACC 96.23 vs. 96.95 vs. 97.45, P &gt; 0.05). When the image gain drops to 50 dB, the model's accuracy decreases significantly (50 dB vs. 105 dB, ACC 96.49 vs. 97.57, P &lt; 0.05). When Gaussian noise is added to the image, the model's performance gradually decreases (0.02 vs. 0, ACC 89.48vs97.06, P &lt; 0.05). When the image size drops to 25% of the original image, the model's performance decreases significantly (25% vs. 100%, ACC 93.18 vs. 97.06, P &lt; 0.01). When the image format changes, the model's recognition accuracy is similar (JPG vs. BMP vs. PNG, ACC 96.98 vs. 97.06 vs. 97.06, P &gt; 0.05). The accuracy of the model in recognizing pseudo-color images decreases significantly compared to grayscale images (grayscale vs. pseudo-color, ACC 35.96 vs. 97.06).</p></div><div><h3>Conclusion</h3><p>These results indicate that image quality greatly influences the model training process, and acquiring high-quality images is an important prerequisite for high recognition performance of the model. This study offers valuable insights for the improvement of other robust deep learning models for ophthalmic ultrasound image recognition.</p></div>\",\"PeriodicalId\":14605,\"journal\":{\"name\":\"Irbm\",\"volume\":\"45 4\",\"pages\":\"Article 100848\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1959031824000290/pdfft?md5=d2db3fd118a09a6347da8a8332f055bd&pid=1-s2.0-S1959031824000290-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irbm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1959031824000290\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031824000290","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估图像因素对用于眼科超声图像诊断的深度学习模型性能的影响。本研究共使用了 3,373 幅眼科超声图像,以深入评估图像因素对深度学习分类模型性能的影响。使用 Inceptionv3、Xception 和融合模型 Inceptionv3-Xception 探索亮度、对比度、增益、噪声、大小、格式、伪彩色七个图像相关因素如何影响模型的分类性能。Inceptionv3-Xception 在各种图像因素的识别准确率方面具有优势。当图像亮度发生变化时,模型的性能呈下降趋势(0.5 vs. 1 vs. 1.8, ACC 95.73 vs. 97.06 vs. 93.54, P < 0.05)。当图像对比度发生变化时,模型的性能相当(0.5 vs. 1 vs. 1.2,ACC 96.23 vs. 96.95 vs. 97.45,P > 0.05)。当图像增益下降到 50 dB 时,模型的准确性显著下降(50 dB vs. 105 dB, ACC 96.49 vs. 97.57, P < 0.05)。当图像中加入高斯噪声时,模型的性能逐渐下降(0.02 vs. 0, ACC 89.48vs97.06, P < 0.05)。当图像大小下降到原始图像的 25% 时,模型的性能显著下降(25% vs. 100%, ACC 93.18 vs. 97.06, P < 0.01)。当图像格式发生变化时,模型的识别准确率相似(JPG vs. BMP vs. PNG, ACC 96.98 vs. 97.06 vs. 97.06, P > 0.05)。与灰度图像相比,模型识别伪彩色图像的准确率明显下降(灰度 vs. 伪彩色,ACC 35.96 vs. 97.06)。这些结果表明,图像质量在很大程度上影响着模型的训练过程,而获取高质量的图像是模型获得高识别性能的重要前提。这项研究为改进眼科超声图像识别的其他鲁棒深度学习模型提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Image Factors on the Performance of Ophthalmic Ultrasound Deep Learning Model

Objective

This study aims to evaluate the impact of image factors on the performance of deep learning models used for ophthalmic ultrasound image diagnosis.

Methods

A total of 3,373 ophthalmic ultrasound images are used to deeply evaluate the influence of image factors on the performance of deep learning classification models. Inceptionv3, Xception, and the fusion model Inceptionv3-Xception are used to explore how brightness, contrast, gain, noise, size, format, pseudo-color seven image-related factors affect the classification performance of the model.

Results

Inceptionv3-Xception has advantages in the recognition accuracy of various image factors. When the image brightness changes, the model's performance shows a downward trend (0.5 vs. 1 vs. 1.8, ACC 95.73 vs. 97.06 vs. 93.54, P < 0.05). When the image contrast changes, the model's performance is comparable (0.5 vs. 1 vs. 1.2, ACC 96.23 vs. 96.95 vs. 97.45, P > 0.05). When the image gain drops to 50 dB, the model's accuracy decreases significantly (50 dB vs. 105 dB, ACC 96.49 vs. 97.57, P < 0.05). When Gaussian noise is added to the image, the model's performance gradually decreases (0.02 vs. 0, ACC 89.48vs97.06, P < 0.05). When the image size drops to 25% of the original image, the model's performance decreases significantly (25% vs. 100%, ACC 93.18 vs. 97.06, P < 0.01). When the image format changes, the model's recognition accuracy is similar (JPG vs. BMP vs. PNG, ACC 96.98 vs. 97.06 vs. 97.06, P > 0.05). The accuracy of the model in recognizing pseudo-color images decreases significantly compared to grayscale images (grayscale vs. pseudo-color, ACC 35.96 vs. 97.06).

Conclusion

These results indicate that image quality greatly influences the model training process, and acquiring high-quality images is an important prerequisite for high recognition performance of the model. This study offers valuable insights for the improvement of other robust deep learning models for ophthalmic ultrasound image recognition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Irbm
Irbm ENGINEERING, BIOMEDICAL-
CiteScore
10.30
自引率
4.20%
发文量
81
审稿时长
57 days
期刊介绍: IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux). As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in: -Physiological and Biological Signal processing (EEG, MEG, ECG…)- Medical Image processing- Biomechanics- Biomaterials- Medical Physics- Biophysics- Physiological and Biological Sensors- Information technologies in healthcare- Disability research- Computational physiology- …
期刊最新文献
Editorial Board Contents Potential of Near-Infrared Optical Techniques for Non-invasive Blood Glucose Measurement: A Pilot Study Corrigendum to “Automatic Detection of Severely and Mildly Infected COVID-19 Patients with Supervised Machine Learning Models” [IRBM (2023) 100725] Comprehensive Review of Feature Extraction Techniques for sEMG Signal Classification: From Handcrafted Features to Deep Learning Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1