{"title":"具有部分维护效果的退化过程的建模和推论","authors":"Margaux Leroy, Christophe Bérenguer, Laurent Doyen, Olivier Gaudoin","doi":"10.1002/qre.3618","DOIUrl":null,"url":null,"abstract":"This paper proposes a new way of modelling imperfect maintenance in degradation models, by assuming that maintenance affects only a part of the degradation process. More precisely, the global degradation process is the sum of two dependent Wiener processes with drift. Maintenance has an effect of the ‐type on only one of these processes: it reduces the degradation level of a quantity which is proportional to the amount of degradation of this process accumulated since previous maintenance. Two particular cases of the model are considered: perturbed and partial replacement models. The usual model is also a specific case of this new model. The system is regularly inspected in order to measure the global degradation level. Two observation schemes are considered. In the complete scheme, the degradation levels are measured both between maintenance actions and at maintenance times (just before and just after). In the general scheme, the degradation levels are measured only between maintenance actions. The maximum likelihood estimation of the model parameters is studied for both observation schemes in both particular models. The quality of the estimators is assessed through a simulation study.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling and inference for a degradation process with partial maintenance effects\",\"authors\":\"Margaux Leroy, Christophe Bérenguer, Laurent Doyen, Olivier Gaudoin\",\"doi\":\"10.1002/qre.3618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new way of modelling imperfect maintenance in degradation models, by assuming that maintenance affects only a part of the degradation process. More precisely, the global degradation process is the sum of two dependent Wiener processes with drift. Maintenance has an effect of the ‐type on only one of these processes: it reduces the degradation level of a quantity which is proportional to the amount of degradation of this process accumulated since previous maintenance. Two particular cases of the model are considered: perturbed and partial replacement models. The usual model is also a specific case of this new model. The system is regularly inspected in order to measure the global degradation level. Two observation schemes are considered. In the complete scheme, the degradation levels are measured both between maintenance actions and at maintenance times (just before and just after). In the general scheme, the degradation levels are measured only between maintenance actions. The maximum likelihood estimation of the model parameters is studied for both observation schemes in both particular models. The quality of the estimators is assessed through a simulation study.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3618\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3618","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Modelling and inference for a degradation process with partial maintenance effects
This paper proposes a new way of modelling imperfect maintenance in degradation models, by assuming that maintenance affects only a part of the degradation process. More precisely, the global degradation process is the sum of two dependent Wiener processes with drift. Maintenance has an effect of the ‐type on only one of these processes: it reduces the degradation level of a quantity which is proportional to the amount of degradation of this process accumulated since previous maintenance. Two particular cases of the model are considered: perturbed and partial replacement models. The usual model is also a specific case of this new model. The system is regularly inspected in order to measure the global degradation level. Two observation schemes are considered. In the complete scheme, the degradation levels are measured both between maintenance actions and at maintenance times (just before and just after). In the general scheme, the degradation levels are measured only between maintenance actions. The maximum likelihood estimation of the model parameters is studied for both observation schemes in both particular models. The quality of the estimators is assessed through a simulation study.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.