高分辨率遥感图像中城市绿地的轻量级多标签分类方法

IF 2.8 3区 地球科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ISPRS International Journal of Geo-Information Pub Date : 2024-07-13 DOI:10.3390/ijgi13070252
Weihua Lin, Dexiong Zhang, Fujiang Liu, Yan Guo, Shuo Chen, Tianqi Wu, Qiuyan Hou
{"title":"高分辨率遥感图像中城市绿地的轻量级多标签分类方法","authors":"Weihua Lin, Dexiong Zhang, Fujiang Liu, Yan Guo, Shuo Chen, Tianqi Wu, Qiuyan Hou","doi":"10.3390/ijgi13070252","DOIUrl":null,"url":null,"abstract":"Urban green spaces are an indispensable part of the ecology of cities, serving as the city’s “purifier” and playing a crucial role in promoting sustainable urban development. Therefore, the refined classification of urban green spaces is an important task in urban planning and management. Traditional methods for the refined classification of urban green spaces heavily rely on expert knowledge, often requiring substantial time and cost. Hence, our study presents a multi-label image classification model based on MobileViT. This model integrates the Triplet Attention module, along with the LSTM module, to enhance its label prediction capabilities while maintaining its lightweight characteristic for standalone operation on mobile devices. Trial outcomes in our UGS dataset in this study demonstrate that the approach we used outperforms the baseline by 1.64%, 3.25%, 3.67%, and 2.71% in mAP,F1,precision, and recall, respectively. This indicates that the model can uncover the latent dependencies among labels to enhance the multi-label image classification device’s performance. This study provides a practical solution for the intelligent and detailed classification of urban green spaces, which holds significant importance for the management and planning of urban green spaces.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"1 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight Multi-Label Classification Method for Urban Green Space in High-Resolution Remote Sensing Imagery\",\"authors\":\"Weihua Lin, Dexiong Zhang, Fujiang Liu, Yan Guo, Shuo Chen, Tianqi Wu, Qiuyan Hou\",\"doi\":\"10.3390/ijgi13070252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban green spaces are an indispensable part of the ecology of cities, serving as the city’s “purifier” and playing a crucial role in promoting sustainable urban development. Therefore, the refined classification of urban green spaces is an important task in urban planning and management. Traditional methods for the refined classification of urban green spaces heavily rely on expert knowledge, often requiring substantial time and cost. Hence, our study presents a multi-label image classification model based on MobileViT. This model integrates the Triplet Attention module, along with the LSTM module, to enhance its label prediction capabilities while maintaining its lightweight characteristic for standalone operation on mobile devices. Trial outcomes in our UGS dataset in this study demonstrate that the approach we used outperforms the baseline by 1.64%, 3.25%, 3.67%, and 2.71% in mAP,F1,precision, and recall, respectively. This indicates that the model can uncover the latent dependencies among labels to enhance the multi-label image classification device’s performance. This study provides a practical solution for the intelligent and detailed classification of urban green spaces, which holds significant importance for the management and planning of urban green spaces.\",\"PeriodicalId\":48738,\"journal\":{\"name\":\"ISPRS International Journal of Geo-Information\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS International Journal of Geo-Information\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/ijgi13070252\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13070252","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

城市绿地是城市生态不可或缺的组成部分,是城市的 "净化器",在促进城市可持续发展方面发挥着至关重要的作用。因此,城市绿地的精细化分类是城市规划和管理的一项重要任务。传统的城市绿地精细化分类方法严重依赖专家知识,往往需要大量的时间和成本。因此,我们的研究提出了一种基于 MobileViT 的多标签图像分类模型。该模型集成了三重注意(Triplet Attention)模块和 LSTM 模块,以增强其标签预测能力,同时保持其轻量级特性,便于在移动设备上独立运行。本研究中 UGS 数据集的试验结果表明,我们采用的方法在 mAP、F1、精确度和召回率方面分别比基线方法高出 1.64%、3.25%、3.67% 和 2.71%。这表明该模型可以揭示标签之间的潜在依赖关系,从而提高多标签图像分类设备的性能。这项研究为城市绿地的智能化详细分类提供了一种实用的解决方案,对城市绿地的管理和规划具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Lightweight Multi-Label Classification Method for Urban Green Space in High-Resolution Remote Sensing Imagery
Urban green spaces are an indispensable part of the ecology of cities, serving as the city’s “purifier” and playing a crucial role in promoting sustainable urban development. Therefore, the refined classification of urban green spaces is an important task in urban planning and management. Traditional methods for the refined classification of urban green spaces heavily rely on expert knowledge, often requiring substantial time and cost. Hence, our study presents a multi-label image classification model based on MobileViT. This model integrates the Triplet Attention module, along with the LSTM module, to enhance its label prediction capabilities while maintaining its lightweight characteristic for standalone operation on mobile devices. Trial outcomes in our UGS dataset in this study demonstrate that the approach we used outperforms the baseline by 1.64%, 3.25%, 3.67%, and 2.71% in mAP,F1,precision, and recall, respectively. This indicates that the model can uncover the latent dependencies among labels to enhance the multi-label image classification device’s performance. This study provides a practical solution for the intelligent and detailed classification of urban green spaces, which holds significant importance for the management and planning of urban green spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISPRS International Journal of Geo-Information
ISPRS International Journal of Geo-Information GEOGRAPHY, PHYSICALREMOTE SENSING&nb-REMOTE SENSING
CiteScore
6.90
自引率
11.80%
发文量
520
审稿时长
19.87 days
期刊介绍: ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.
期刊最新文献
Geometric Characterization of the Mateur Plain in Northern Tunisia Using Vertical Electrical Sounding and Remote Sensing Techniques Potentials in Using VR for Facilitating Geography Teaching in Classrooms: A Systematic Review Urban Internal Network Structure and Resilience Characteristics from the Perspective of Population Mobility: A Case Study of Nanjing, China Investigating Spatial Effects through Machine Learning and Leveraging Explainable AI for Child Malnutrition in Pakistan Mapping Localization Preferences for Residential Buildings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1