{"title":"在曲面三角形和四面体上具有逐部求和性质的高效张量积谱元算子","authors":"Tristan Montoya, David W. Zingg","doi":"10.1137/23m1573963","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2270-A2297, August 2024. <br/> Abstract. We present an extension of the summation-by-parts (SBP) framework to tensor-product spectral-element operators in collapsed coordinates. The proposed approach enables the construction of provably stable discretizations of arbitrary order which combine the geometric flexibility of unstructured triangular and tetrahedral meshes with the efficiency of sum-factorization algorithms. Specifically, a methodology is developed for constructing triangular and tetrahedral spectral-element operators of any order which possess the SBP property (i.e., satisfying a discrete analogue of integration by parts) as well as a tensor-product decomposition. Such operators are then employed within the context of discontinuous spectral-element methods based on nodal expansions collocated at the tensor-product quadrature nodes as well as modal expansions employing Proriol–Koornwinder–Dubiner polynomials, the latter approach resolving the time step limitation associated with the singularity of the collapsed coordinate transformation. Energy-stable formulations for curvilinear meshes are obtained using a skew-symmetric splitting of the metric terms, and a weight-adjusted approximation is used to efficiently invert the curvilinear modal mass matrix. The proposed schemes are compared to those using nontensorial multidimensional SBP operators and are found to offer comparable accuracy to such schemes in the context of smooth linear advection problems on curved meshes, but at a reduced computational cost for higher polynomial degrees. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and Data Available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/tristanmontoya/ReproduceSBPSimplex and in the supplementary materials (reproducibility_repository.zip [35.7MB]).","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"15 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Tensor-Product Spectral-Element Operators with the Summation-by-Parts Property on Curved Triangles and Tetrahedra\",\"authors\":\"Tristan Montoya, David W. Zingg\",\"doi\":\"10.1137/23m1573963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2270-A2297, August 2024. <br/> Abstract. We present an extension of the summation-by-parts (SBP) framework to tensor-product spectral-element operators in collapsed coordinates. The proposed approach enables the construction of provably stable discretizations of arbitrary order which combine the geometric flexibility of unstructured triangular and tetrahedral meshes with the efficiency of sum-factorization algorithms. Specifically, a methodology is developed for constructing triangular and tetrahedral spectral-element operators of any order which possess the SBP property (i.e., satisfying a discrete analogue of integration by parts) as well as a tensor-product decomposition. Such operators are then employed within the context of discontinuous spectral-element methods based on nodal expansions collocated at the tensor-product quadrature nodes as well as modal expansions employing Proriol–Koornwinder–Dubiner polynomials, the latter approach resolving the time step limitation associated with the singularity of the collapsed coordinate transformation. Energy-stable formulations for curvilinear meshes are obtained using a skew-symmetric splitting of the metric terms, and a weight-adjusted approximation is used to efficiently invert the curvilinear modal mass matrix. The proposed schemes are compared to those using nontensorial multidimensional SBP operators and are found to offer comparable accuracy to such schemes in the context of smooth linear advection problems on curved meshes, but at a reduced computational cost for higher polynomial degrees. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and Data Available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/tristanmontoya/ReproduceSBPSimplex and in the supplementary materials (reproducibility_repository.zip [35.7MB]).\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1573963\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1573963","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Efficient Tensor-Product Spectral-Element Operators with the Summation-by-Parts Property on Curved Triangles and Tetrahedra
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2270-A2297, August 2024. Abstract. We present an extension of the summation-by-parts (SBP) framework to tensor-product spectral-element operators in collapsed coordinates. The proposed approach enables the construction of provably stable discretizations of arbitrary order which combine the geometric flexibility of unstructured triangular and tetrahedral meshes with the efficiency of sum-factorization algorithms. Specifically, a methodology is developed for constructing triangular and tetrahedral spectral-element operators of any order which possess the SBP property (i.e., satisfying a discrete analogue of integration by parts) as well as a tensor-product decomposition. Such operators are then employed within the context of discontinuous spectral-element methods based on nodal expansions collocated at the tensor-product quadrature nodes as well as modal expansions employing Proriol–Koornwinder–Dubiner polynomials, the latter approach resolving the time step limitation associated with the singularity of the collapsed coordinate transformation. Energy-stable formulations for curvilinear meshes are obtained using a skew-symmetric splitting of the metric terms, and a weight-adjusted approximation is used to efficiently invert the curvilinear modal mass matrix. The proposed schemes are compared to those using nontensorial multidimensional SBP operators and are found to offer comparable accuracy to such schemes in the context of smooth linear advection problems on curved meshes, but at a reduced computational cost for higher polynomial degrees. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and Data Available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/tristanmontoya/ReproduceSBPSimplex and in the supplementary materials (reproducibility_repository.zip [35.7MB]).
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.