Render unto Numerics:用于具有非周期性边界条件的 PDE 的正交多项式神经算子

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-12 DOI:10.1137/23m1556320
Ziyuan Liu, Haifeng Wang, Hong Zhang, Kaijun Bao, Xu Qian, Songhe Song
{"title":"Render unto Numerics:用于具有非周期性边界条件的 PDE 的正交多项式神经算子","authors":"Ziyuan Liu, Haifeng Wang, Hong Zhang, Kaijun Bao, Xu Qian, Songhe Song","doi":"10.1137/23m1556320","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C323-C348, August 2024. <br/> Abstract. By learning the mappings between infinite function spaces using carefully designed neural networks, the operator learning methodology has exhibited significantly more efficiency than traditional methods in solving differential equations, but faces concerns about their accuracy and reliability. To overcome these limitations through robustly enforcing boundary conditions (BCs), a general neural architecture named spectral operator learning is introduced by combining with the structures of the spectral numerical method. One variant called the orthogonal polynomial neural operator (OPNO) is proposed later, aiming at PDEs with Dirichlet, Neumann, and Robin BCs. The strict BC satisfaction properties and the universal approximation capacity of the OPNO are theoretically proven. A variety of numerical experiments with physical backgrounds demonstrate that the OPNO outperforms other existing deep learning methodologies, showcasing potential of comparable accuracy with the traditional second-order finite difference method that employs a considerably fine mesh (with relative errors on the order of [math]), and is up to almost 5 magnitudes faster over the traditional method. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/liu-ziyuan-math/spectral_operator_learning/tree/main/OPNO/Reproduce and in the supplementary materials (spectral_operator_learning-main.zip [669KB]).","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Render unto Numerics: Orthogonal Polynomial Neural Operator for PDEs with Nonperiodic Boundary Conditions\",\"authors\":\"Ziyuan Liu, Haifeng Wang, Hong Zhang, Kaijun Bao, Xu Qian, Songhe Song\",\"doi\":\"10.1137/23m1556320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C323-C348, August 2024. <br/> Abstract. By learning the mappings between infinite function spaces using carefully designed neural networks, the operator learning methodology has exhibited significantly more efficiency than traditional methods in solving differential equations, but faces concerns about their accuracy and reliability. To overcome these limitations through robustly enforcing boundary conditions (BCs), a general neural architecture named spectral operator learning is introduced by combining with the structures of the spectral numerical method. One variant called the orthogonal polynomial neural operator (OPNO) is proposed later, aiming at PDEs with Dirichlet, Neumann, and Robin BCs. The strict BC satisfaction properties and the universal approximation capacity of the OPNO are theoretically proven. A variety of numerical experiments with physical backgrounds demonstrate that the OPNO outperforms other existing deep learning methodologies, showcasing potential of comparable accuracy with the traditional second-order finite difference method that employs a considerably fine mesh (with relative errors on the order of [math]), and is up to almost 5 magnitudes faster over the traditional method. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/liu-ziyuan-math/spectral_operator_learning/tree/main/OPNO/Reproduce and in the supplementary materials (spectral_operator_learning-main.zip [669KB]).\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1556320\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1556320","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 4 期,第 C323-C348 页,2024 年 8 月。 摘要通过使用精心设计的神经网络学习无限函数空间之间的映射,算子学习方法在求解微分方程方面的效率明显高于传统方法,但其准确性和可靠性却令人担忧。为了通过稳健地强制执行边界条件(BC)来克服这些限制,我们结合谱数值方法的结构,引入了一种名为谱算子学习的通用神经架构。后来又提出了一种名为正交多项式神经算子(OPNO)的变体,主要针对具有迪里夏特、诺伊曼和罗宾 BCs 的 PDE。理论证明了 OPNO 严格的 BC 满足特性和普遍的逼近能力。各种具有物理背景的数值实验表明,OPNO 的性能优于其他现有的深度学习方法,展示了与传统二阶有限差分法(采用相当精细的网格(相对误差在[math]数量级))相当的精度潜力,并且比传统方法快近 5 倍。计算结果的可重复性。本文被授予 "SIAM 可重复性徽章":代码和数据可用",以表彰作者遵循了 SISC 和科学计算界重视的可重现性原则。读者可以通过 https://github.com/liu-ziyuan-math/spectral_operator_learning/tree/main/OPNO/Reproduce 和补充材料(spectral_operator_learning-main.zip [669KB])中的代码和数据重现本文的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Render unto Numerics: Orthogonal Polynomial Neural Operator for PDEs with Nonperiodic Boundary Conditions
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C323-C348, August 2024.
Abstract. By learning the mappings between infinite function spaces using carefully designed neural networks, the operator learning methodology has exhibited significantly more efficiency than traditional methods in solving differential equations, but faces concerns about their accuracy and reliability. To overcome these limitations through robustly enforcing boundary conditions (BCs), a general neural architecture named spectral operator learning is introduced by combining with the structures of the spectral numerical method. One variant called the orthogonal polynomial neural operator (OPNO) is proposed later, aiming at PDEs with Dirichlet, Neumann, and Robin BCs. The strict BC satisfaction properties and the universal approximation capacity of the OPNO are theoretically proven. A variety of numerical experiments with physical backgrounds demonstrate that the OPNO outperforms other existing deep learning methodologies, showcasing potential of comparable accuracy with the traditional second-order finite difference method that employs a considerably fine mesh (with relative errors on the order of [math]), and is up to almost 5 magnitudes faster over the traditional method. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/liu-ziyuan-math/spectral_operator_learning/tree/main/OPNO/Reproduce and in the supplementary materials (spectral_operator_learning-main.zip [669KB]).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1