Lisa Gaedke-Merzhäuser, Elias Krainski, Radim Janalik, Håvard Rue, Olaf Schenk
{"title":"用于大规模时空贝叶斯建模的集成嵌套拉普拉斯近似法","authors":"Lisa Gaedke-Merzhäuser, Elias Krainski, Radim Janalik, Håvard Rue, Olaf Schenk","doi":"10.1137/23m1561531","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page B448-B473, August 2024. <br/> Abstract. Bayesian inference tasks continue to pose a computational challenge. This especially holds for spatiotemporal modeling, where high-dimensional latent parameter spaces are ubiquitous. The methodology of integrated nested Laplace approximations (INLA) provides a framework for performing Bayesian inference applicable to a large subclass of additive Bayesian hierarchical models. In combination with the stochastic partial differential equation (SPDE) approach, it gives rise to an efficient method for spatiotemporal modeling. In this work, we build on the INLA-SPDE approach by putting forward a performant distributed memory variant, INLADIST, for large-scale applications. To perform the arising computational kernel operations, consisting of Cholesky factorizations, solving linear systems, and selected matrix inversions, we present two numerical solver options: a sparse CPU-based library and a novel blocked GPU-accelerated approach which we propose. We leverage the recurring nonzero block structure in the arising precision (inverse covariance) matrices, which allows us to employ dense subroutines within a sparse setting. Both versions of INLADIST are highly scalable, capable of performing inference on models with millions of latent parameters. We demonstrate their accuracy and performance on synthetic as well as real-world climate dataset applications.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"32 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Nested Laplace Approximations for Large-Scale Spatiotemporal Bayesian Modeling\",\"authors\":\"Lisa Gaedke-Merzhäuser, Elias Krainski, Radim Janalik, Håvard Rue, Olaf Schenk\",\"doi\":\"10.1137/23m1561531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page B448-B473, August 2024. <br/> Abstract. Bayesian inference tasks continue to pose a computational challenge. This especially holds for spatiotemporal modeling, where high-dimensional latent parameter spaces are ubiquitous. The methodology of integrated nested Laplace approximations (INLA) provides a framework for performing Bayesian inference applicable to a large subclass of additive Bayesian hierarchical models. In combination with the stochastic partial differential equation (SPDE) approach, it gives rise to an efficient method for spatiotemporal modeling. In this work, we build on the INLA-SPDE approach by putting forward a performant distributed memory variant, INLADIST, for large-scale applications. To perform the arising computational kernel operations, consisting of Cholesky factorizations, solving linear systems, and selected matrix inversions, we present two numerical solver options: a sparse CPU-based library and a novel blocked GPU-accelerated approach which we propose. We leverage the recurring nonzero block structure in the arising precision (inverse covariance) matrices, which allows us to employ dense subroutines within a sparse setting. Both versions of INLADIST are highly scalable, capable of performing inference on models with millions of latent parameters. We demonstrate their accuracy and performance on synthetic as well as real-world climate dataset applications.\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1561531\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1561531","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Integrated Nested Laplace Approximations for Large-Scale Spatiotemporal Bayesian Modeling
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page B448-B473, August 2024. Abstract. Bayesian inference tasks continue to pose a computational challenge. This especially holds for spatiotemporal modeling, where high-dimensional latent parameter spaces are ubiquitous. The methodology of integrated nested Laplace approximations (INLA) provides a framework for performing Bayesian inference applicable to a large subclass of additive Bayesian hierarchical models. In combination with the stochastic partial differential equation (SPDE) approach, it gives rise to an efficient method for spatiotemporal modeling. In this work, we build on the INLA-SPDE approach by putting forward a performant distributed memory variant, INLADIST, for large-scale applications. To perform the arising computational kernel operations, consisting of Cholesky factorizations, solving linear systems, and selected matrix inversions, we present two numerical solver options: a sparse CPU-based library and a novel blocked GPU-accelerated approach which we propose. We leverage the recurring nonzero block structure in the arising precision (inverse covariance) matrices, which allows us to employ dense subroutines within a sparse setting. Both versions of INLADIST are highly scalable, capable of performing inference on models with millions of latent parameters. We demonstrate their accuracy and performance on synthetic as well as real-world climate dataset applications.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.