利用人工神经网络持续绘制核反应堆堆芯功率图,即使在探测器处于非活动状态的情况下也是如此

IF 2.6 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Nuclear Engineering and Technology Pub Date : 2024-07-04 DOI:10.1016/j.net.2024.07.007
João D. Talon, Aquilino S. Martinez, Alessandro C. Gonçalves
{"title":"利用人工神经网络持续绘制核反应堆堆芯功率图,即使在探测器处于非活动状态的情况下也是如此","authors":"João D. Talon, Aquilino S. Martinez, Alessandro C. Gonçalves","doi":"10.1016/j.net.2024.07.007","DOIUrl":null,"url":null,"abstract":"Monitoring the radial power distribution during the operation of a pressurized light water reactor (PWR) is crucial for ensuring safe operating conditions and achieving high levels of fuel burnup. This paper introduces a methodology utilizing Artificial Neural Networks (ANN) for reconstructing the radial power distribution in the core of a Pressurized Water Reactor (PWR) with a hot full power of 1876 MWth, such as the Angra 1 reactor. This approach uses measurements from Self-Powered Neutron Detectors (SPND), simulated through the SERPENT code. The use of ANN demonstrated good accuracy in predicting the radial power distribution with an average relative error of 1.27%, considering 36 active detectors, with maximum relative error of 6.99%. Moreover, the proposed process demonstrated robust performance, even when measurements from one, two, or three SPND detectors were unavailable, resulting in errors of 1.24%, 1.13 %, and 1.09%, respectively. Therefore, the methodology ensures a reliable reconstruction of the radial power distribution, even when SPND detector measurements are unavailable, enabling the optimization of detector use and contributing to the increase of operational safety margins.","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous mapping of nuclear reactor core power using artificial neural network even in the presence of inactive detectors\",\"authors\":\"João D. Talon, Aquilino S. Martinez, Alessandro C. Gonçalves\",\"doi\":\"10.1016/j.net.2024.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring the radial power distribution during the operation of a pressurized light water reactor (PWR) is crucial for ensuring safe operating conditions and achieving high levels of fuel burnup. This paper introduces a methodology utilizing Artificial Neural Networks (ANN) for reconstructing the radial power distribution in the core of a Pressurized Water Reactor (PWR) with a hot full power of 1876 MWth, such as the Angra 1 reactor. This approach uses measurements from Self-Powered Neutron Detectors (SPND), simulated through the SERPENT code. The use of ANN demonstrated good accuracy in predicting the radial power distribution with an average relative error of 1.27%, considering 36 active detectors, with maximum relative error of 6.99%. Moreover, the proposed process demonstrated robust performance, even when measurements from one, two, or three SPND detectors were unavailable, resulting in errors of 1.24%, 1.13 %, and 1.09%, respectively. Therefore, the methodology ensures a reliable reconstruction of the radial power distribution, even when SPND detector measurements are unavailable, enabling the optimization of detector use and contributing to the increase of operational safety margins.\",\"PeriodicalId\":19272,\"journal\":{\"name\":\"Nuclear Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.net.2024.07.007\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.net.2024.07.007","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

监测压水堆(PWR)运行期间的径向功率分布对于确保安全运行条件和实现高水平燃料燃烧至关重要。本文介绍了一种利用人工神经网络(ANN)重建热满负荷功率为 1876 MWth 的压水堆(如安格拉 1 号反应堆)堆芯径向功率分布的方法。该方法使用自供电中子探测器(SPND)的测量数据,并通过 SERPENT 代码进行模拟。使用方差网络(ANN)预测径向功率分布的准确性很高,平均相对误差为 1.27%(考虑到 36 个有源探测器),最大相对误差为 6.99%。此外,即使无法获得一个、两个或三个 SPND 探测器的测量结果,所提出的程序也能表现出稳健的性能,误差分别为 1.24%、1.13 % 和 1.09%。因此,即使在无法获得 SPND 探测器测量结果的情况下,该方法也能确保可靠地重建径向功率分布,从而优化探测器的使用,提高运行安全系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continuous mapping of nuclear reactor core power using artificial neural network even in the presence of inactive detectors
Monitoring the radial power distribution during the operation of a pressurized light water reactor (PWR) is crucial for ensuring safe operating conditions and achieving high levels of fuel burnup. This paper introduces a methodology utilizing Artificial Neural Networks (ANN) for reconstructing the radial power distribution in the core of a Pressurized Water Reactor (PWR) with a hot full power of 1876 MWth, such as the Angra 1 reactor. This approach uses measurements from Self-Powered Neutron Detectors (SPND), simulated through the SERPENT code. The use of ANN demonstrated good accuracy in predicting the radial power distribution with an average relative error of 1.27%, considering 36 active detectors, with maximum relative error of 6.99%. Moreover, the proposed process demonstrated robust performance, even when measurements from one, two, or three SPND detectors were unavailable, resulting in errors of 1.24%, 1.13 %, and 1.09%, respectively. Therefore, the methodology ensures a reliable reconstruction of the radial power distribution, even when SPND detector measurements are unavailable, enabling the optimization of detector use and contributing to the increase of operational safety margins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Engineering and Technology
Nuclear Engineering and Technology 工程技术-核科学技术
CiteScore
4.80
自引率
7.40%
发文量
431
审稿时长
3.5 months
期刊介绍: Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters. NET covers all fields for peaceful utilization of nuclear energy and radiation as follows: 1) Reactor Physics 2) Thermal Hydraulics 3) Nuclear Safety 4) Nuclear I&C 5) Nuclear Physics, Fusion, and Laser Technology 6) Nuclear Fuel Cycle and Radioactive Waste Management 7) Nuclear Fuel and Reactor Materials 8) Radiation Application 9) Radiation Protection 10) Nuclear Structural Analysis and Plant Management & Maintenance 11) Nuclear Policy, Economics, and Human Resource Development
期刊最新文献
An innovative and efficient implementation of matrix-free Newton krylov method for neutronics/thermal-hydraulics coupling simulation Numerical investigation of welding deformation diminution for double shell structure using the layered inherent strain The small modular molten salt reactor potential and opportunity in Saudi Arabia Kinetic simulation of uranium migration in granite fissure media of beishan, gansu, China: A case study based on the Laplace transform and inverse transform methods Fluence-to-dose conversion coefficients in a voxel rat model for external neutron irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1