双向厄尔多斯-京法斯函数的增长率

Pub Date : 2024-07-11 DOI:10.1002/jgt.23149
Xihe Li, Hajo Broersma, Ligong Wang
{"title":"双向厄尔多斯-京法斯函数的增长率","authors":"Xihe Li,&nbsp;Hajo Broersma,&nbsp;Ligong Wang","doi":"10.1002/jgt.23149","DOIUrl":null,"url":null,"abstract":"<p>Given two graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $G,H$</annotation>\n </semantics></math> and a positive integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>q</mi>\n </mrow>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>, an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>H</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $(H,q)$</annotation>\n </semantics></math>-coloring of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is an edge-coloring of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that every copy of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> receives at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>q</mi>\n </mrow>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math> distinct colors. The bipartite Erdős–Gyárfás function <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $r({K}_{n,n},{K}_{s,t},q)$</annotation>\n </semantics></math> is defined to be the minimum number of colors needed for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${K}_{n,n}$</annotation>\n </semantics></math> to have a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $({K}_{s,t},q)$</annotation>\n </semantics></math>-coloring. For balanced complete bipartite graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${K}_{p,p}$</annotation>\n </semantics></math>, the function <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>p</mi>\n \n <mo>,</mo>\n \n <mi>p</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $r({K}_{n,n},{K}_{p,p},q)$</annotation>\n </semantics></math> was studied systematically in Axenovich et al. In this paper, we study the asymptotic behavior of this function for complete bipartite graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${K}_{s,t}$</annotation>\n </semantics></math> that are not necessarily balanced. Our main results deal with thresholds and lower and upper bounds for the growth rate of this function, in particular for (sub)linear and (sub)quadratic growth. We also obtain new lower bounds for the balanced bipartite case, and improve several results given by Axenovich, Füredi and Mubayi. Our proof techniques are based on an extension to bipartite graphs of the recently developed Color Energy Method by Pohoata and Sheffer and its refinements, and a generalization of an old result due to Corrádi.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23149","citationCount":"0","resultStr":"{\"title\":\"Growth rates of the bipartite Erdős–Gyárfás function\",\"authors\":\"Xihe Li,&nbsp;Hajo Broersma,&nbsp;Ligong Wang\",\"doi\":\"10.1002/jgt.23149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given two graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G,H$</annotation>\\n </semantics></math> and a positive integer <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </mrow>\\n <annotation> $q$</annotation>\\n </semantics></math>, an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>H</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $(H,q)$</annotation>\\n </semantics></math>-coloring of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is an edge-coloring of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> such that every copy of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> receives at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </mrow>\\n <annotation> $q$</annotation>\\n </semantics></math> distinct colors. The bipartite Erdős–Gyárfás function <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>s</mi>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $r({K}_{n,n},{K}_{s,t},q)$</annotation>\\n </semantics></math> is defined to be the minimum number of colors needed for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${K}_{n,n}$</annotation>\\n </semantics></math> to have a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>s</mi>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $({K}_{s,t},q)$</annotation>\\n </semantics></math>-coloring. For balanced complete bipartite graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>p</mi>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${K}_{p,p}$</annotation>\\n </semantics></math>, the function <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>p</mi>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n </mrow>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $r({K}_{n,n},{K}_{p,p},q)$</annotation>\\n </semantics></math> was studied systematically in Axenovich et al. In this paper, we study the asymptotic behavior of this function for complete bipartite graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mi>s</mi>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${K}_{s,t}$</annotation>\\n </semantics></math> that are not necessarily balanced. Our main results deal with thresholds and lower and upper bounds for the growth rate of this function, in particular for (sub)linear and (sub)quadratic growth. We also obtain new lower bounds for the balanced bipartite case, and improve several results given by Axenovich, Füredi and Mubayi. Our proof techniques are based on an extension to bipartite graphs of the recently developed Color Energy Method by Pohoata and Sheffer and its refinements, and a generalization of an old result due to Corrádi.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23149\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定两个图和一个正整数 , 的-着色是一个边着色,使得 in 的每一个副本都得到至少不同的颜色。双向厄尔多斯-雅尔法函数的定义是,要有一个-着色所需的最少颜色数。在本文中,我们将研究该函数在不一定平衡的完整双方图中的渐近行为。我们的主要结果涉及该函数增长率的阈值、下限和上限,特别是(亚)线性增长和(亚)二次增长。我们还获得了平衡两方情况下的新下限,并改进了阿克森诺维奇、富雷迪和穆巴伊给出的几个结果。我们的证明技术是基于 Pohoata 和 Sheffer 最近开发的彩色能量法及其改进版,以及对 Corrádi 提出的一个旧结果的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Growth rates of the bipartite Erdős–Gyárfás function

Given two graphs G , H $G,H$ and a positive integer q $q$ , an ( H , q ) $(H,q)$ -coloring of G $G$ is an edge-coloring of G $G$ such that every copy of H $H$ in G $G$ receives at least q $q$ distinct colors. The bipartite Erdős–Gyárfás function r ( K n , n , K s , t , q ) $r({K}_{n,n},{K}_{s,t},q)$ is defined to be the minimum number of colors needed for K n , n ${K}_{n,n}$ to have a ( K s , t , q ) $({K}_{s,t},q)$ -coloring. For balanced complete bipartite graphs K p , p ${K}_{p,p}$ , the function r ( K n , n , K p , p , q ) $r({K}_{n,n},{K}_{p,p},q)$ was studied systematically in Axenovich et al. In this paper, we study the asymptotic behavior of this function for complete bipartite graphs K s , t ${K}_{s,t}$ that are not necessarily balanced. Our main results deal with thresholds and lower and upper bounds for the growth rate of this function, in particular for (sub)linear and (sub)quadratic growth. We also obtain new lower bounds for the balanced bipartite case, and improve several results given by Axenovich, Füredi and Mubayi. Our proof techniques are based on an extension to bipartite graphs of the recently developed Color Energy Method by Pohoata and Sheffer and its refinements, and a generalization of an old result due to Corrádi.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1