Xiaobo Guo, Longfei Zhou, Baohong Shi, Yu Li, Siya Lin, Yanxia Li, Jianbo Sun, Gang Liu, Jintao Yin, Chenglin Zhang
{"title":"基于不同实验方法的长7页岩热解烃生成特征:对鄂尔多斯盆地页岩油气的启示","authors":"Xiaobo Guo, Longfei Zhou, Baohong Shi, Yu Li, Siya Lin, Yanxia Li, Jianbo Sun, Gang Liu, Jintao Yin, Chenglin Zhang","doi":"10.1002/gj.5002","DOIUrl":null,"url":null,"abstract":"<p>Shale oil and gas resources are abundant in the Chang 7 shale of the Yanchang Formation in Ordos Basin. To determine the characteristics and influencing factors of hydrocarbon generation evolution of the Chang 7 shale, a series of thermal simulation experiments were conducted on low-maturity shale and kerogen samples. The results indicate that the maximum yield of shale oil are 294.5 and 304.3 mg/g TOC for kerogen sample at heating rates of 20 and 2°C/h, and the corresponding experimental temperatures are 360.2°C and 408.0°C, respectively. The utilization of lower heating rates is favourable for shale oil generation and it is recommended to employ a lower heating rate during in situ heating processes to maximize the economic benefits. The formation of crude oil cracking gas begins when simulating temperature exceeds 528.0°C (Easy R<sub>o</sub> 2.6%) at a heating rate of 20°C/h and 480.0°C (Easy R<sub>o</sub> 2.5%) at a heating rate of 2°C/h, as indicated by the carbon isotopic composition of gaseous hydrocarbons. The maximum oil production rate of the rock powder sample is 159.8 mg/g TOC, which is lower than that of the kerogen sample. It suggests that certain minerals in the Chang 7 shale may impede hydrocarbon generation. After the addition of pyrite, the highest yield of shale oil is 213.96 mg/g TOC, 33.9% higher than the yield of the original rock powder sample, reflecting the positive catalytic effect of pyrite on hydrocarbon generation of Chang 7 shale. Under geologic conditions, pyrite catalytic hydrocarbon generation may act primarily on the migration of organic matter by macromolecules, which considerably increases the probability of direct contact between pyrite and organic matter. Therefore, the organic-rich shale with high pyrite content in Chang 7 member is the preferred target for in situ conversion of shale oil and gas in the Ordos Basin.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrolytic hydrocarbon generation characteristics of the Chang 7 shale based on different experimental methods: Implications for shale oil and gas in the Ordos Basin\",\"authors\":\"Xiaobo Guo, Longfei Zhou, Baohong Shi, Yu Li, Siya Lin, Yanxia Li, Jianbo Sun, Gang Liu, Jintao Yin, Chenglin Zhang\",\"doi\":\"10.1002/gj.5002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Shale oil and gas resources are abundant in the Chang 7 shale of the Yanchang Formation in Ordos Basin. To determine the characteristics and influencing factors of hydrocarbon generation evolution of the Chang 7 shale, a series of thermal simulation experiments were conducted on low-maturity shale and kerogen samples. The results indicate that the maximum yield of shale oil are 294.5 and 304.3 mg/g TOC for kerogen sample at heating rates of 20 and 2°C/h, and the corresponding experimental temperatures are 360.2°C and 408.0°C, respectively. The utilization of lower heating rates is favourable for shale oil generation and it is recommended to employ a lower heating rate during in situ heating processes to maximize the economic benefits. The formation of crude oil cracking gas begins when simulating temperature exceeds 528.0°C (Easy R<sub>o</sub> 2.6%) at a heating rate of 20°C/h and 480.0°C (Easy R<sub>o</sub> 2.5%) at a heating rate of 2°C/h, as indicated by the carbon isotopic composition of gaseous hydrocarbons. The maximum oil production rate of the rock powder sample is 159.8 mg/g TOC, which is lower than that of the kerogen sample. It suggests that certain minerals in the Chang 7 shale may impede hydrocarbon generation. After the addition of pyrite, the highest yield of shale oil is 213.96 mg/g TOC, 33.9% higher than the yield of the original rock powder sample, reflecting the positive catalytic effect of pyrite on hydrocarbon generation of Chang 7 shale. Under geologic conditions, pyrite catalytic hydrocarbon generation may act primarily on the migration of organic matter by macromolecules, which considerably increases the probability of direct contact between pyrite and organic matter. Therefore, the organic-rich shale with high pyrite content in Chang 7 member is the preferred target for in situ conversion of shale oil and gas in the Ordos Basin.</p>\",\"PeriodicalId\":12784,\"journal\":{\"name\":\"Geological Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gj.5002\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5002","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Pyrolytic hydrocarbon generation characteristics of the Chang 7 shale based on different experimental methods: Implications for shale oil and gas in the Ordos Basin
Shale oil and gas resources are abundant in the Chang 7 shale of the Yanchang Formation in Ordos Basin. To determine the characteristics and influencing factors of hydrocarbon generation evolution of the Chang 7 shale, a series of thermal simulation experiments were conducted on low-maturity shale and kerogen samples. The results indicate that the maximum yield of shale oil are 294.5 and 304.3 mg/g TOC for kerogen sample at heating rates of 20 and 2°C/h, and the corresponding experimental temperatures are 360.2°C and 408.0°C, respectively. The utilization of lower heating rates is favourable for shale oil generation and it is recommended to employ a lower heating rate during in situ heating processes to maximize the economic benefits. The formation of crude oil cracking gas begins when simulating temperature exceeds 528.0°C (Easy Ro 2.6%) at a heating rate of 20°C/h and 480.0°C (Easy Ro 2.5%) at a heating rate of 2°C/h, as indicated by the carbon isotopic composition of gaseous hydrocarbons. The maximum oil production rate of the rock powder sample is 159.8 mg/g TOC, which is lower than that of the kerogen sample. It suggests that certain minerals in the Chang 7 shale may impede hydrocarbon generation. After the addition of pyrite, the highest yield of shale oil is 213.96 mg/g TOC, 33.9% higher than the yield of the original rock powder sample, reflecting the positive catalytic effect of pyrite on hydrocarbon generation of Chang 7 shale. Under geologic conditions, pyrite catalytic hydrocarbon generation may act primarily on the migration of organic matter by macromolecules, which considerably increases the probability of direct contact between pyrite and organic matter. Therefore, the organic-rich shale with high pyrite content in Chang 7 member is the preferred target for in situ conversion of shale oil and gas in the Ordos Basin.
期刊介绍:
In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited.
The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.