Jiu‐Jiu Chen, Qiu‐Shuang Yang, Shao‐Yong Huo, Chun‐Ming Fu
{"title":"二阶拓扑声晶中的多维彩虹陷波","authors":"Jiu‐Jiu Chen, Qiu‐Shuang Yang, Shao‐Yong Huo, Chun‐Ming Fu","doi":"10.1002/pssb.202400200","DOIUrl":null,"url":null,"abstract":"Topological rainbow trapping, which can separate and trap different frequencies of topological states into different positions, plays a key role in topological acoustic devices. However, few schemes have been proposed to realize multidimensional topological rainbow trapping effects with the hierarchy of edge and corner, which has partly restricted their practical applications in multifunctional integrated acoustic devices. Herein, a tactic to realize a multidimensional topological rainbow trapping of acoustic wave with the hierarchy of edge and corner in the second‐order topological sonic crystals is proposed. Based on the designing of a self‐ordering structure to both induce the topological phases of the bulk and edge states in the rectangular lattice, the edge states and corner states are obtained. Furthermore, the regularity between the located frequency of topological edge and corner states and the geometric parameters are discussed in detail. Finally, the rainbow trapping effects for topological edge states and corner states are investigated, respectively, in which different frequencies of topological acoustic edge and corner states are well separated and trapped in different positions without overlap. This proposal may provide a novel way for multidimensional wave manipulation and the integration of multifunctional acoustic devices.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"60 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidimensional Rainbow Trapping of Sound in the Second‐Order Topological Sonic Crystals\",\"authors\":\"Jiu‐Jiu Chen, Qiu‐Shuang Yang, Shao‐Yong Huo, Chun‐Ming Fu\",\"doi\":\"10.1002/pssb.202400200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological rainbow trapping, which can separate and trap different frequencies of topological states into different positions, plays a key role in topological acoustic devices. However, few schemes have been proposed to realize multidimensional topological rainbow trapping effects with the hierarchy of edge and corner, which has partly restricted their practical applications in multifunctional integrated acoustic devices. Herein, a tactic to realize a multidimensional topological rainbow trapping of acoustic wave with the hierarchy of edge and corner in the second‐order topological sonic crystals is proposed. Based on the designing of a self‐ordering structure to both induce the topological phases of the bulk and edge states in the rectangular lattice, the edge states and corner states are obtained. Furthermore, the regularity between the located frequency of topological edge and corner states and the geometric parameters are discussed in detail. Finally, the rainbow trapping effects for topological edge states and corner states are investigated, respectively, in which different frequencies of topological acoustic edge and corner states are well separated and trapped in different positions without overlap. This proposal may provide a novel way for multidimensional wave manipulation and the integration of multifunctional acoustic devices.\",\"PeriodicalId\":20406,\"journal\":{\"name\":\"Physica Status Solidi B-basic Solid State Physics\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi B-basic Solid State Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202400200\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400200","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Multidimensional Rainbow Trapping of Sound in the Second‐Order Topological Sonic Crystals
Topological rainbow trapping, which can separate and trap different frequencies of topological states into different positions, plays a key role in topological acoustic devices. However, few schemes have been proposed to realize multidimensional topological rainbow trapping effects with the hierarchy of edge and corner, which has partly restricted their practical applications in multifunctional integrated acoustic devices. Herein, a tactic to realize a multidimensional topological rainbow trapping of acoustic wave with the hierarchy of edge and corner in the second‐order topological sonic crystals is proposed. Based on the designing of a self‐ordering structure to both induce the topological phases of the bulk and edge states in the rectangular lattice, the edge states and corner states are obtained. Furthermore, the regularity between the located frequency of topological edge and corner states and the geometric parameters are discussed in detail. Finally, the rainbow trapping effects for topological edge states and corner states are investigated, respectively, in which different frequencies of topological acoustic edge and corner states are well separated and trapped in different positions without overlap. This proposal may provide a novel way for multidimensional wave manipulation and the integration of multifunctional acoustic devices.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.