论计算生态系统异质性的空间拉奥 Q 的数学特性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-11 DOI:10.1007/s12080-024-00587-3
Duccio Rocchini, Michele Torresani, Carlo Ricotta
{"title":"论计算生态系统异质性的空间拉奥 Q 的数学特性","authors":"Duccio Rocchini, Michele Torresani, Carlo Ricotta","doi":"10.1007/s12080-024-00587-3","DOIUrl":null,"url":null,"abstract":"<p>Spatio-ecological heterogeneity has a significant impact on various ecosystem properties, such as biodiversity patterns, variability in ecosystem resources, and species distributions. Given this perspective, remote sensing has gained widespread recognition as a powerful tool for assessing the spatial heterogeneity of ecosystems by analyzing the variability among different pixel values in both space and, potentially, time. Several measures of spatial heterogeneity have been proposed, broadly categorized into abundance-related measures (e.g., Shannon’s H) and dispersion-related measures (e.g., Variance). A measure that integrates both abundance and distance information is the Rao’s quadratic entropy (Rao’s Q index), mainly used in ecology to measure plant diversity based on in-situ based functional traits. The question arises as to why one should use a complex measure that considers multiple dimensions and couples abundance and distance measurements instead of relying solely on simple dispersion-based measures of heterogeneity. This paper sheds light on the spatial version of the Rao’s Q index, based on moving windows for its calculation, with a particular emphasis on its mathematical and statistical properties. The main objective is to theoretically demonstrate the strength of Rao’s Q index in measuring heterogeneity, taking into account all its potential facets and applications, including (i) integrating multivariate data, (ii) applying differential weighting to pixels, and (iii) considering differential weighting of distances among pixel reflectance values in spectral space.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the mathematical properties of spatial Rao’s Q to compute ecosystem heterogeneity\",\"authors\":\"Duccio Rocchini, Michele Torresani, Carlo Ricotta\",\"doi\":\"10.1007/s12080-024-00587-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spatio-ecological heterogeneity has a significant impact on various ecosystem properties, such as biodiversity patterns, variability in ecosystem resources, and species distributions. Given this perspective, remote sensing has gained widespread recognition as a powerful tool for assessing the spatial heterogeneity of ecosystems by analyzing the variability among different pixel values in both space and, potentially, time. Several measures of spatial heterogeneity have been proposed, broadly categorized into abundance-related measures (e.g., Shannon’s H) and dispersion-related measures (e.g., Variance). A measure that integrates both abundance and distance information is the Rao’s quadratic entropy (Rao’s Q index), mainly used in ecology to measure plant diversity based on in-situ based functional traits. The question arises as to why one should use a complex measure that considers multiple dimensions and couples abundance and distance measurements instead of relying solely on simple dispersion-based measures of heterogeneity. This paper sheds light on the spatial version of the Rao’s Q index, based on moving windows for its calculation, with a particular emphasis on its mathematical and statistical properties. The main objective is to theoretically demonstrate the strength of Rao’s Q index in measuring heterogeneity, taking into account all its potential facets and applications, including (i) integrating multivariate data, (ii) applying differential weighting to pixels, and (iii) considering differential weighting of distances among pixel reflectance values in spectral space.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12080-024-00587-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12080-024-00587-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

空间-生态异质性对生物多样性模式、生态系统资源的变异性和物种分布等各种生态系统特性具有重大影响。有鉴于此,遥感技术通过分析不同像素值在空间和潜在时间上的变异性,已被广泛视为评估生态系统空间异质性的有力工具。目前已提出了几种空间异质性测量方法,大致可分为与丰度相关的测量方法(如香农 H)和与离散度相关的测量方法(如方差)。拉奥二次熵(Rao's Q 指数)是一种综合了丰度和距离信息的测量方法,主要用于生态学中基于原地功能特征的植物多样性测量。由此产生的问题是,为什么要使用一种考虑多个维度并将丰度和距离测量相结合的复杂测量方法,而不是仅仅依靠基于离散度的简单异质性测量方法呢?本文阐明了基于移动窗口计算的空间版拉奥 Q 指数,并特别强调了其数学和统计特性。主要目的是从理论上证明 Rao Q 指数在测量异质性方面的优势,同时考虑到其所有潜在的方面和应用,包括:(i) 整合多元数据,(ii) 对像素进行差分加权,以及 (iii) 考虑对光谱空间中像素反射率值之间的距离进行差分加权。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the mathematical properties of spatial Rao’s Q to compute ecosystem heterogeneity

Spatio-ecological heterogeneity has a significant impact on various ecosystem properties, such as biodiversity patterns, variability in ecosystem resources, and species distributions. Given this perspective, remote sensing has gained widespread recognition as a powerful tool for assessing the spatial heterogeneity of ecosystems by analyzing the variability among different pixel values in both space and, potentially, time. Several measures of spatial heterogeneity have been proposed, broadly categorized into abundance-related measures (e.g., Shannon’s H) and dispersion-related measures (e.g., Variance). A measure that integrates both abundance and distance information is the Rao’s quadratic entropy (Rao’s Q index), mainly used in ecology to measure plant diversity based on in-situ based functional traits. The question arises as to why one should use a complex measure that considers multiple dimensions and couples abundance and distance measurements instead of relying solely on simple dispersion-based measures of heterogeneity. This paper sheds light on the spatial version of the Rao’s Q index, based on moving windows for its calculation, with a particular emphasis on its mathematical and statistical properties. The main objective is to theoretically demonstrate the strength of Rao’s Q index in measuring heterogeneity, taking into account all its potential facets and applications, including (i) integrating multivariate data, (ii) applying differential weighting to pixels, and (iii) considering differential weighting of distances among pixel reflectance values in spectral space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1