{"title":"论计算生态系统异质性的空间拉奥 Q 的数学特性","authors":"Duccio Rocchini, Michele Torresani, Carlo Ricotta","doi":"10.1007/s12080-024-00587-3","DOIUrl":null,"url":null,"abstract":"<p>Spatio-ecological heterogeneity has a significant impact on various ecosystem properties, such as biodiversity patterns, variability in ecosystem resources, and species distributions. Given this perspective, remote sensing has gained widespread recognition as a powerful tool for assessing the spatial heterogeneity of ecosystems by analyzing the variability among different pixel values in both space and, potentially, time. Several measures of spatial heterogeneity have been proposed, broadly categorized into abundance-related measures (e.g., Shannon’s H) and dispersion-related measures (e.g., Variance). A measure that integrates both abundance and distance information is the Rao’s quadratic entropy (Rao’s Q index), mainly used in ecology to measure plant diversity based on in-situ based functional traits. The question arises as to why one should use a complex measure that considers multiple dimensions and couples abundance and distance measurements instead of relying solely on simple dispersion-based measures of heterogeneity. This paper sheds light on the spatial version of the Rao’s Q index, based on moving windows for its calculation, with a particular emphasis on its mathematical and statistical properties. The main objective is to theoretically demonstrate the strength of Rao’s Q index in measuring heterogeneity, taking into account all its potential facets and applications, including (i) integrating multivariate data, (ii) applying differential weighting to pixels, and (iii) considering differential weighting of distances among pixel reflectance values in spectral space.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the mathematical properties of spatial Rao’s Q to compute ecosystem heterogeneity\",\"authors\":\"Duccio Rocchini, Michele Torresani, Carlo Ricotta\",\"doi\":\"10.1007/s12080-024-00587-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spatio-ecological heterogeneity has a significant impact on various ecosystem properties, such as biodiversity patterns, variability in ecosystem resources, and species distributions. Given this perspective, remote sensing has gained widespread recognition as a powerful tool for assessing the spatial heterogeneity of ecosystems by analyzing the variability among different pixel values in both space and, potentially, time. Several measures of spatial heterogeneity have been proposed, broadly categorized into abundance-related measures (e.g., Shannon’s H) and dispersion-related measures (e.g., Variance). A measure that integrates both abundance and distance information is the Rao’s quadratic entropy (Rao’s Q index), mainly used in ecology to measure plant diversity based on in-situ based functional traits. The question arises as to why one should use a complex measure that considers multiple dimensions and couples abundance and distance measurements instead of relying solely on simple dispersion-based measures of heterogeneity. This paper sheds light on the spatial version of the Rao’s Q index, based on moving windows for its calculation, with a particular emphasis on its mathematical and statistical properties. The main objective is to theoretically demonstrate the strength of Rao’s Q index in measuring heterogeneity, taking into account all its potential facets and applications, including (i) integrating multivariate data, (ii) applying differential weighting to pixels, and (iii) considering differential weighting of distances among pixel reflectance values in spectral space.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12080-024-00587-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12080-024-00587-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On the mathematical properties of spatial Rao’s Q to compute ecosystem heterogeneity
Spatio-ecological heterogeneity has a significant impact on various ecosystem properties, such as biodiversity patterns, variability in ecosystem resources, and species distributions. Given this perspective, remote sensing has gained widespread recognition as a powerful tool for assessing the spatial heterogeneity of ecosystems by analyzing the variability among different pixel values in both space and, potentially, time. Several measures of spatial heterogeneity have been proposed, broadly categorized into abundance-related measures (e.g., Shannon’s H) and dispersion-related measures (e.g., Variance). A measure that integrates both abundance and distance information is the Rao’s quadratic entropy (Rao’s Q index), mainly used in ecology to measure plant diversity based on in-situ based functional traits. The question arises as to why one should use a complex measure that considers multiple dimensions and couples abundance and distance measurements instead of relying solely on simple dispersion-based measures of heterogeneity. This paper sheds light on the spatial version of the Rao’s Q index, based on moving windows for its calculation, with a particular emphasis on its mathematical and statistical properties. The main objective is to theoretically demonstrate the strength of Rao’s Q index in measuring heterogeneity, taking into account all its potential facets and applications, including (i) integrating multivariate data, (ii) applying differential weighting to pixels, and (iii) considering differential weighting of distances among pixel reflectance values in spectral space.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.