考虑土-结构相互作用的 52 层扭转塔楼与规则塔楼抗震分析比较

IF 2.6 2区 工程技术 Q2 ENGINEERING, CIVIL Earthquake Engineering and Engineering Vibration Pub Date : 2024-07-13 DOI:10.1007/s11803-024-2264-6
Mohamed Naguib Abouelsaad, Mohammed Shaaban, Salah El Bagalaty, Mohamed E. El Madawy
{"title":"考虑土-结构相互作用的 52 层扭转塔楼与规则塔楼抗震分析比较","authors":"Mohamed Naguib Abouelsaad, Mohammed Shaaban, Salah El Bagalaty, Mohamed E. El Madawy","doi":"10.1007/s11803-024-2264-6","DOIUrl":null,"url":null,"abstract":"<p>A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction (SSI) on high-rise buildings. In addition, the difference between the seismic performance of using twisting towers over regular ones is investigated. The twisting tower is a simulation of the Evolution Tower (Moscow). The towers’ skeletons consist of RC elements and rest on a reinforced concrete piled-raft foundation. The soil model is considered as multi-layered with the same soil properties as the zone chosen for the analysis (New Mansoura City, Egypt). The only difference between both towers is their shape in elevation. The whole system is modelled and analyzed in a single step as one full 3D model, which is known as the direct approach in SSI. All analyses are carried out using finite-element software (Midas GTS NX). Dynamic output responses due to three records of seismic loads are proposed and presented in some graphs. Based on the results, it is concluded that SSI has a considerable effect on the dynamic response of tall buildings mainly because of the foundation flexibility, as it leads to lengthening the vibration period, increasing the story drift and the base shear for both cases.</p>","PeriodicalId":11416,"journal":{"name":"Earthquake Engineering and Engineering Vibration","volume":"10 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison between seismic analysis of twisting and regular 52-story towers considering soil-structure interaction\",\"authors\":\"Mohamed Naguib Abouelsaad, Mohammed Shaaban, Salah El Bagalaty, Mohamed E. El Madawy\",\"doi\":\"10.1007/s11803-024-2264-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction (SSI) on high-rise buildings. In addition, the difference between the seismic performance of using twisting towers over regular ones is investigated. The twisting tower is a simulation of the Evolution Tower (Moscow). The towers’ skeletons consist of RC elements and rest on a reinforced concrete piled-raft foundation. The soil model is considered as multi-layered with the same soil properties as the zone chosen for the analysis (New Mansoura City, Egypt). The only difference between both towers is their shape in elevation. The whole system is modelled and analyzed in a single step as one full 3D model, which is known as the direct approach in SSI. All analyses are carried out using finite-element software (Midas GTS NX). Dynamic output responses due to three records of seismic loads are proposed and presented in some graphs. Based on the results, it is concluded that SSI has a considerable effect on the dynamic response of tall buildings mainly because of the foundation flexibility, as it leads to lengthening the vibration period, increasing the story drift and the base shear for both cases.</p>\",\"PeriodicalId\":11416,\"journal\":{\"name\":\"Earthquake Engineering and Engineering Vibration\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering and Engineering Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11803-024-2264-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Engineering Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11803-024-2264-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

对扭转塔楼和普通塔楼进行了动态分析,以确定考虑高层建筑土壤-结构相互作用(SSI)的结果。此外,还研究了扭转塔楼与普通塔楼在抗震性能上的差异。扭转塔是对 Evolution Tower(莫斯科)的模拟。塔的骨架由钢筋混凝土构件组成,并固定在钢筋混凝土桩筏基础上。土壤模型被视为多层土壤,其土壤性质与分析所选区域(埃及新曼苏尔市)相同。两座塔楼的唯一不同之处在于它们的立面形状。整个系统作为一个完整的三维模型进行建模和分析,这在 SSI 中被称为直接方法。所有分析均使用有限元软件(Midas GTS NX)进行。提出了三种地震载荷记录下的动态输出响应,并用一些图表表示出来。根据分析结果,可以得出结论:SSI 对高层建筑的动态响应有相当大的影响,这主要是由于地基的柔韧性,因为它导致振动周期延长,增加了两种情况下的楼层漂移和基底剪力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison between seismic analysis of twisting and regular 52-story towers considering soil-structure interaction

A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction (SSI) on high-rise buildings. In addition, the difference between the seismic performance of using twisting towers over regular ones is investigated. The twisting tower is a simulation of the Evolution Tower (Moscow). The towers’ skeletons consist of RC elements and rest on a reinforced concrete piled-raft foundation. The soil model is considered as multi-layered with the same soil properties as the zone chosen for the analysis (New Mansoura City, Egypt). The only difference between both towers is their shape in elevation. The whole system is modelled and analyzed in a single step as one full 3D model, which is known as the direct approach in SSI. All analyses are carried out using finite-element software (Midas GTS NX). Dynamic output responses due to three records of seismic loads are proposed and presented in some graphs. Based on the results, it is concluded that SSI has a considerable effect on the dynamic response of tall buildings mainly because of the foundation flexibility, as it leads to lengthening the vibration period, increasing the story drift and the base shear for both cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
21.40%
发文量
1057
审稿时长
9 months
期刊介绍: Earthquake Engineering and Engineering Vibration is an international journal sponsored by the Institute of Engineering Mechanics (IEM), China Earthquake Administration in cooperation with the Multidisciplinary Center for Earthquake Engineering Research (MCEER), and State University of New York at Buffalo. It promotes scientific exchange between Chinese and foreign scientists and engineers, to improve the theory and practice of earthquake hazards mitigation, preparedness, and recovery. The journal focuses on earthquake engineering in all aspects, including seismology, tsunamis, ground motion characteristics, soil and foundation dynamics, wave propagation, probabilistic and deterministic methods of dynamic analysis, behavior of structures, and methods for earthquake resistant design and retrofit of structures that are germane to practicing engineers. It includes seismic code requirements, as well as supplemental energy dissipation, base isolation, and structural control.
期刊最新文献
Field survey and analysis on near-fault severely damaged high-speed railway bridge in 2022 M6.9 Menyuan earthquake Physics-based seismic analysis of ancient wood structure: fault-to-structure simulation Nonlinear vibration of Timoshenko FG porous sandwich beams subjected to a harmonic axial load Wave propagation of a functionally graded plate via integral variables with a hyperbolic arcsine function Optimal design for rubber concrete layered periodic foundations based on the analytical approximations of band gaps and mapping relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1