pth 阶广义二项式自回归模型的统计推断

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY Journal of the Korean Statistical Society Pub Date : 2024-07-13 DOI:10.1007/s42952-024-00276-1
Jie Zhang, Siyu Shao, Dehui Wang, Danshu Sheng
{"title":"pth 阶广义二项式自回归模型的统计推断","authors":"Jie Zhang, Siyu Shao, Dehui Wang, Danshu Sheng","doi":"10.1007/s42952-024-00276-1","DOIUrl":null,"url":null,"abstract":"<p>To capture the higher-order autocorrelation structure for finite-range integer-valued time series of counts, and to consider the interdependence between individuals, a <i>p</i>th-order generalized binomial autoregressive (GBAR(<i>p</i>)) process is proposed in this paper. The stationarity and ergodicity of the GBAR(<i>p</i>) model are proved, and the basic probabilistic and statistical properties of the model are discussed. The unknown parameters are estimated by the conditional least squares and conditional maximum likelihood methods. The performances of two kinds of estimators are studied via simulations, and the forecasting problem of this model is also considered in this paper. Finally, the model is applied to a real data set and compared with some existing models to investigate the rationality of the GBAR(<i>p</i>) model.</p>","PeriodicalId":49992,"journal":{"name":"Journal of the Korean Statistical Society","volume":"25 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical inference of pth-order generalized binomial autoregressive model\",\"authors\":\"Jie Zhang, Siyu Shao, Dehui Wang, Danshu Sheng\",\"doi\":\"10.1007/s42952-024-00276-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To capture the higher-order autocorrelation structure for finite-range integer-valued time series of counts, and to consider the interdependence between individuals, a <i>p</i>th-order generalized binomial autoregressive (GBAR(<i>p</i>)) process is proposed in this paper. The stationarity and ergodicity of the GBAR(<i>p</i>) model are proved, and the basic probabilistic and statistical properties of the model are discussed. The unknown parameters are estimated by the conditional least squares and conditional maximum likelihood methods. The performances of two kinds of estimators are studied via simulations, and the forecasting problem of this model is also considered in this paper. Finally, the model is applied to a real data set and compared with some existing models to investigate the rationality of the GBAR(<i>p</i>) model.</p>\",\"PeriodicalId\":49992,\"journal\":{\"name\":\"Journal of the Korean Statistical Society\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Statistical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s42952-024-00276-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Statistical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00276-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

为了捕捉有限范围整数值计数时间序列的高阶自相关结构,并考虑个体间的相互依赖关系,本文提出了一个 pth 阶广义二叉自回归(GBAR(p))过程。本文证明了 GBAR(p) 模型的静态性和遍历性,并讨论了该模型的基本概率和统计特性。采用条件最小二乘法和条件极大似然法估计未知参数。本文还考虑了该模型的预测问题。最后,将该模型应用于实际数据集,并与一些现有模型进行比较,以研究 GBAR(p) 模型的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical inference of pth-order generalized binomial autoregressive model

To capture the higher-order autocorrelation structure for finite-range integer-valued time series of counts, and to consider the interdependence between individuals, a pth-order generalized binomial autoregressive (GBAR(p)) process is proposed in this paper. The stationarity and ergodicity of the GBAR(p) model are proved, and the basic probabilistic and statistical properties of the model are discussed. The unknown parameters are estimated by the conditional least squares and conditional maximum likelihood methods. The performances of two kinds of estimators are studied via simulations, and the forecasting problem of this model is also considered in this paper. Finally, the model is applied to a real data set and compared with some existing models to investigate the rationality of the GBAR(p) model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Korean Statistical Society
Journal of the Korean Statistical Society 数学-统计学与概率论
CiteScore
1.30
自引率
0.00%
发文量
37
审稿时长
3 months
期刊介绍: The Journal of the Korean Statistical Society publishes research articles that make original contributions to the theory and methodology of statistics and probability. It also welcomes papers on innovative applications of statistical methodology, as well as papers that give an overview of current topic of statistical research with judgements about promising directions for future work. The journal welcomes contributions from all countries.
期刊最新文献
Asymmetric kernel density estimation for biased data Community detection for networks based on Monte Carlo type algorithms Integrated volatility estimation: the case of observed noise variables Using statistical models for optimal packaging in semiconductor manufacturing processes Generalized parametric help in Hilbertian additive regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1