合理调整应激颗粒中与浓度无关的朊病毒样结构域的富集。

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Biology Pub Date : 2024-07-14 DOI:10.1016/j.jmb.2024.168703
{"title":"合理调整应激颗粒中与浓度无关的朊病毒样结构域的富集。","authors":"","doi":"10.1016/j.jmb.2024.168703","DOIUrl":null,"url":null,"abstract":"<div><p>Stress granules (SGs) are large ribonucleoprotein assemblies that form in response to acute stress in eukaryotes. SG formation is thought to be initiated by liquid–liquid phase separation (LLPS) of key proteins and RNA. These molecules serve as a scaffold for recruitment of client molecules. LLPS of scaffold proteins <em>in vitro</em> is highly concentration-dependent, yet biomolecular condensates <em>in vivo</em> contain hundreds of unique proteins, most of which are thought to be clients rather than scaffolds. Many proteins that localize to SGs contain low-complexity, prion-like domains (PrLDs) that have been implicated in LLPS and SG recruitment. The degree of enrichment of proteins in biomolecular condensates such as SGs can vary widely, but the underlying basis for these differences is not fully understood. Here, we develop a toolkit of model PrLDs to examine the factors that govern efficiency of PrLD recruitment to stress granules. Recruitment was highly sensitive to amino acid composition: enrichment in SGs could be tuned through subtle changes in hydrophobicity. By contrast, SG recruitment was largely insensitive to PrLD concentration at both a population level and single-cell level. These observations point to a model wherein PrLDs are enriched in SGs through either simple solvation effects or interactions that are effectively non-saturable even at high expression levels.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Tuning of the Concentration-independent Enrichment of Prion-like Domains in Stress Granules\",\"authors\":\"\",\"doi\":\"10.1016/j.jmb.2024.168703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stress granules (SGs) are large ribonucleoprotein assemblies that form in response to acute stress in eukaryotes. SG formation is thought to be initiated by liquid–liquid phase separation (LLPS) of key proteins and RNA. These molecules serve as a scaffold for recruitment of client molecules. LLPS of scaffold proteins <em>in vitro</em> is highly concentration-dependent, yet biomolecular condensates <em>in vivo</em> contain hundreds of unique proteins, most of which are thought to be clients rather than scaffolds. Many proteins that localize to SGs contain low-complexity, prion-like domains (PrLDs) that have been implicated in LLPS and SG recruitment. The degree of enrichment of proteins in biomolecular condensates such as SGs can vary widely, but the underlying basis for these differences is not fully understood. Here, we develop a toolkit of model PrLDs to examine the factors that govern efficiency of PrLD recruitment to stress granules. Recruitment was highly sensitive to amino acid composition: enrichment in SGs could be tuned through subtle changes in hydrophobicity. By contrast, SG recruitment was largely insensitive to PrLD concentration at both a population level and single-cell level. These observations point to a model wherein PrLDs are enriched in SGs through either simple solvation effects or interactions that are effectively non-saturable even at high expression levels.</p></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283624003127\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624003127","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

应激颗粒(SGs)是真核生物在应对急性应激时形成的大型核糖核蛋白集合体。据认为,SG 的形成是由关键蛋白质和 RNA 的液-液相分离(LLPS)启动的。这些分子是招募客户分子的支架。体外支架蛋白的液-液相分离高度依赖浓度,但体内的生物分子凝聚物包含数百种独特的蛋白质,其中大多数被认为是客户而非支架。许多定位到 SG 的蛋白质含有低复杂度的类朊病毒结构域(PrLDs),这些结构域与 LLPS 和 SG 招募有关。蛋白质在 SG 等生物分子凝聚体中的富集程度会有很大差异,但这些差异的根本原因还不完全清楚。在这里,我们开发了一套模型 PrLDs 工具包,以研究影响 PrLD 招募到应激颗粒效率的因素。招募对氨基酸组成高度敏感:通过疏水性的微妙变化可以调整在应激颗粒中的富集。相比之下,在群体水平和单细胞水平上,SG 招募对 PrLD 浓度基本不敏感。这些观察结果表明,PrLDs 是通过简单的溶解效应或相互作用富集到 SG 中的,这种相互作用即使在高表达水平下也是不可吸收的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rational Tuning of the Concentration-independent Enrichment of Prion-like Domains in Stress Granules

Stress granules (SGs) are large ribonucleoprotein assemblies that form in response to acute stress in eukaryotes. SG formation is thought to be initiated by liquid–liquid phase separation (LLPS) of key proteins and RNA. These molecules serve as a scaffold for recruitment of client molecules. LLPS of scaffold proteins in vitro is highly concentration-dependent, yet biomolecular condensates in vivo contain hundreds of unique proteins, most of which are thought to be clients rather than scaffolds. Many proteins that localize to SGs contain low-complexity, prion-like domains (PrLDs) that have been implicated in LLPS and SG recruitment. The degree of enrichment of proteins in biomolecular condensates such as SGs can vary widely, but the underlying basis for these differences is not fully understood. Here, we develop a toolkit of model PrLDs to examine the factors that govern efficiency of PrLD recruitment to stress granules. Recruitment was highly sensitive to amino acid composition: enrichment in SGs could be tuned through subtle changes in hydrophobicity. By contrast, SG recruitment was largely insensitive to PrLD concentration at both a population level and single-cell level. These observations point to a model wherein PrLDs are enriched in SGs through either simple solvation effects or interactions that are effectively non-saturable even at high expression levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
期刊最新文献
Outside Front Cover Editorial Board Inventing Novel Protein Folds Insights into Ligand-Mediated Activation of an Oligomeric Ring-Shaped Gene-Regulatory Protein from Solution- and Solid-State NMR Outside Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1