UBAP2L 有助于 P 型体的形成,并能调节它们与应激颗粒的结合。

IF 7.4 1区 生物学 Q1 CELL BIOLOGY Journal of Cell Biology Pub Date : 2024-10-07 Epub Date: 2024-07-15 DOI:10.1083/jcb.202307146
Claire L Riggs, Nancy Kedersha, Misheel Amarsanaa, Safiyah Noor Zubair, Pavel Ivanov, Paul Anderson
{"title":"UBAP2L 有助于 P 型体的形成,并能调节它们与应激颗粒的结合。","authors":"Claire L Riggs, Nancy Kedersha, Misheel Amarsanaa, Safiyah Noor Zubair, Pavel Ivanov, Paul Anderson","doi":"10.1083/jcb.202307146","DOIUrl":null,"url":null,"abstract":"<p><p>Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 10","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11248227/pdf/","citationCount":"0","resultStr":"{\"title\":\"UBAP2L contributes to formation of P-bodies and modulates their association with stress granules.\",\"authors\":\"Claire L Riggs, Nancy Kedersha, Misheel Amarsanaa, Safiyah Noor Zubair, Pavel Ivanov, Paul Anderson\",\"doi\":\"10.1083/jcb.202307146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.</p>\",\"PeriodicalId\":15211,\"journal\":{\"name\":\"Journal of Cell Biology\",\"volume\":\"223 10\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11248227/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1083/jcb.202307146\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202307146","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

应激会引发两种不同的细胞质生物分子凝聚体的形成:应激颗粒(SGs)和加工体(PBs),它们都可能有助于应激反应翻译调控。虽然 PBs 可组成性存在,但应激可增加它们的数量和大小,并导致它们与应激诱导的 SGs 相互作用。然而,这种相互作用的机制在很大程度上还不清楚。典型 SG 的形成需要 RNA 结合蛋白类泛素相关蛋白 2(Ubiquitin-Associated Protein 2-Like,UBAP2L),它是 SG 与 PB 的 RNA 蛋白相互作用网络中的核心节点蛋白。UBAP2L 分别与重要的 SG 和 PB 蛋白 G3BP 和 DDX6 结合。对 UBAP2L 的研究主要集中在它在 SG 中的作用,而没有关注它与 PB 的联系。我们发现,UBAP2L 不仅仅是一种 SG 蛋白,在某些条件下还会定位到 PB,促进 PB 的生物生成和 SG-PB 的相互作用,并能在细胞中核化含有 SG 和 PB 成分的混合颗粒。这些发现为 UBAP2L 的作用背景下 SG 和 PB 的形成提供了一个新模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UBAP2L contributes to formation of P-bodies and modulates their association with stress granules.

Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cell Biology
Journal of Cell Biology 生物-细胞生物学
CiteScore
12.60
自引率
2.60%
发文量
213
审稿时长
1 months
期刊介绍: The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.
期刊最新文献
Epidermal maintenance of Langerhans cells relies on autophagy-regulated lipid metabolism. Structural response of microtubule and actin cytoskeletons to direct intracellular load. Securin regulates the spatiotemporal dynamics of separase. Arrayed CRISPRi library to suppress genes required for Schizosaccharomyces pombe viability. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1