LY2940094 是一种 NOPR 拮抗剂,它能以独立于 NOPR 的方式促进少突胶质细胞的生成和髓鞘的恢复。

IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Neurotherapeutics Pub Date : 2024-09-01 DOI:10.1016/j.neurot.2024.e00424
Yanhui Duan , Chenyuan Ye , Jingyi Liao , Xin Xie
{"title":"LY2940094 是一种 NOPR 拮抗剂,它能以独立于 NOPR 的方式促进少突胶质细胞的生成和髓鞘的恢复。","authors":"Yanhui Duan ,&nbsp;Chenyuan Ye ,&nbsp;Jingyi Liao ,&nbsp;Xin Xie","doi":"10.1016/j.neurot.2024.e00424","DOIUrl":null,"url":null,"abstract":"<div><div>The myelin sheath plays crucial roles in brain development and neuronal functions. In the central nervous system, myelin is generated by oligodendrocytes, that differentiate from oligodendrocyte progenitor cells (OPC). In demyelinating diseases, the differentiation capacity of OPC is impaired and remyelination is dampened. Boosting remyelination by promoting OPC differentiation is a novel strategy for the treatment of demyelinating diseases. The opioid system, which consists of four receptors and their ligands, has been implicated in OPC differentiation and myelin formation. However, the exact roles of each opioid receptor and the relevant pharmacological molecules in OPC differentiation and myelin formation remain elusive. In the present study, specific agonists and antagonists of each opioid receptor were used to explore the function of opioid receptors in OPC differentiation. Nociceptin/orphanin FQ receptor (NOPR) specific antagonist LY2940094 was found to stimulate OPC differentiation and myelination in both in vitro and in vivo models. Unexpectedly, other NOPR ligands did not affect OPC differentiation, and NOPR knockdown did not mimic or impede the effect of LY2940094. LY2940094 was found to modulate the expression of the oligodendrocytes differentiation-associated transcription factors ID4 and Myrf, although the exact mechanism remains unclear. Since LY2940094 has been tested clinically to treat depression and alcohol dependency and has displayed an acceptable safety profile, it may provide an alternative approach to treat demyelinating diseases.</div></div>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 5","pages":"Article e00424"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LY2940094, an NOPR antagonist, promotes oligodendrocyte generation and myelin recovery in an NOPR independent manner\",\"authors\":\"Yanhui Duan ,&nbsp;Chenyuan Ye ,&nbsp;Jingyi Liao ,&nbsp;Xin Xie\",\"doi\":\"10.1016/j.neurot.2024.e00424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The myelin sheath plays crucial roles in brain development and neuronal functions. In the central nervous system, myelin is generated by oligodendrocytes, that differentiate from oligodendrocyte progenitor cells (OPC). In demyelinating diseases, the differentiation capacity of OPC is impaired and remyelination is dampened. Boosting remyelination by promoting OPC differentiation is a novel strategy for the treatment of demyelinating diseases. The opioid system, which consists of four receptors and their ligands, has been implicated in OPC differentiation and myelin formation. However, the exact roles of each opioid receptor and the relevant pharmacological molecules in OPC differentiation and myelin formation remain elusive. In the present study, specific agonists and antagonists of each opioid receptor were used to explore the function of opioid receptors in OPC differentiation. Nociceptin/orphanin FQ receptor (NOPR) specific antagonist LY2940094 was found to stimulate OPC differentiation and myelination in both in vitro and in vivo models. Unexpectedly, other NOPR ligands did not affect OPC differentiation, and NOPR knockdown did not mimic or impede the effect of LY2940094. LY2940094 was found to modulate the expression of the oligodendrocytes differentiation-associated transcription factors ID4 and Myrf, although the exact mechanism remains unclear. Since LY2940094 has been tested clinically to treat depression and alcohol dependency and has displayed an acceptable safety profile, it may provide an alternative approach to treat demyelinating diseases.</div></div>\",\"PeriodicalId\":19159,\"journal\":{\"name\":\"Neurotherapeutics\",\"volume\":\"21 5\",\"pages\":\"Article e00424\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotherapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878747924001107\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878747924001107","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

髓鞘在大脑发育和神经元功能中起着至关重要的作用。在中枢神经系统中,髓鞘由少突胶质细胞生成,而少突胶质细胞是从少突胶质祖细胞(OPC)分化而来。在脱髓鞘疾病中,OPC 的分化能力受损,髓鞘再形成受到抑制。通过促进OPC分化来促进再髓鞘化是治疗脱髓鞘疾病的一种新策略。阿片系统由四种受体及其配体组成,与 OPC 分化和髓鞘形成有关。然而,每种阿片受体和相关药理分子在OPC分化和髓鞘形成中的确切作用仍不明确。本研究利用每种阿片受体的特异性激动剂和拮抗剂来探讨阿片受体在OPC分化中的功能。研究发现,在体外和体内模型中,Nociceptin/orphanin FQ受体(NOPR)特异性拮抗剂LY2940094都能刺激OPC分化和髓鞘化。出乎意料的是,其他 NOPR 配体并不影响 OPC 的分化,而 NOPR 敲除也不会模拟或阻碍 LY2940094 的作用。研究发现,LY2940094 可调节少突胶质细胞分化相关转录因子 ID4 和 Myrf 的表达,但具体机制仍不清楚。由于 LY2940094 已用于治疗抑郁症和酒精依赖症的临床试验,并显示出可接受的安全性,因此它可能是治疗脱髓鞘疾病的另一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LY2940094, an NOPR antagonist, promotes oligodendrocyte generation and myelin recovery in an NOPR independent manner
The myelin sheath plays crucial roles in brain development and neuronal functions. In the central nervous system, myelin is generated by oligodendrocytes, that differentiate from oligodendrocyte progenitor cells (OPC). In demyelinating diseases, the differentiation capacity of OPC is impaired and remyelination is dampened. Boosting remyelination by promoting OPC differentiation is a novel strategy for the treatment of demyelinating diseases. The opioid system, which consists of four receptors and their ligands, has been implicated in OPC differentiation and myelin formation. However, the exact roles of each opioid receptor and the relevant pharmacological molecules in OPC differentiation and myelin formation remain elusive. In the present study, specific agonists and antagonists of each opioid receptor were used to explore the function of opioid receptors in OPC differentiation. Nociceptin/orphanin FQ receptor (NOPR) specific antagonist LY2940094 was found to stimulate OPC differentiation and myelination in both in vitro and in vivo models. Unexpectedly, other NOPR ligands did not affect OPC differentiation, and NOPR knockdown did not mimic or impede the effect of LY2940094. LY2940094 was found to modulate the expression of the oligodendrocytes differentiation-associated transcription factors ID4 and Myrf, although the exact mechanism remains unclear. Since LY2940094 has been tested clinically to treat depression and alcohol dependency and has displayed an acceptable safety profile, it may provide an alternative approach to treat demyelinating diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurotherapeutics
Neurotherapeutics 医学-神经科学
CiteScore
11.00
自引率
3.50%
发文量
154
审稿时长
6-12 weeks
期刊介绍: Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities. The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field. Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.
期刊最新文献
Clavulanic acid prevents paclitaxel-induced neuropathic pain through a systemic and central anti-inflammatory effect in mice. Graft ischemia post cell transplantation to the brain: Glucose deprivation as the primary driver of rapid cell death. Inducers and modulators of protein aggregation in Alzheimer's disease - Critical tools for understanding the foundations of aggregate structures. Delayed atorvastatin delivery promotes recovery after experimental spinal cord injury. Evolving concepts in intracranial pressure monitoring - from traditional monitoring to precision medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1