Craig McBeth, David Brown, Pawel Pokorski, Lydia Lei, Vicki Stone
{"title":"利用邻苯二甲醛对体外培养的哺乳动物细胞中氧化型和还原型谷胱甘肽进行快速定量。","authors":"Craig McBeth, David Brown, Pawel Pokorski, Lydia Lei, Vicki Stone","doi":"10.3791/66267","DOIUrl":null,"url":null,"abstract":"<p><p>Glutathione has long been considered a key biomarker for determining the antioxidant response of the cell. Hence, it is a primary marker for reactive oxygen species studies. The method utilizes Ortho-phthalaldehyde (OPA) to quantify the cellular concentration of glutathione(s). OPA conjugates with reduced glutathione (GSH) via sulfhydryl binding to subsequently form an isoindole, resulting in a highly fluorescent conjugate. To attain an accurate result of both oxidized glutathione (GSSG) and GSH, a combination of masking agents and reducing agents, which have been implemented in this protocol, are required. Treatments may also impact cellular viability. Hence, normalization via protein assay is presented in this multiparametric assay. The assay demonstrates a pseudo-linear detection range of 0.234 - 30µM (R<sup>2</sup>=0.9932±0.007 (N=12)) specific to GSH. The proposed assay also allows for the determination of oxidized glutathione with the addition of the masking agent N-ethylmaleimide to bind reduced glutathione, and the reducing agent tris(2-carboxyethyl) phosphine is introduced to cleave the disulfide bond in GSSG to produce two molecules of GSH. The assay is used in combination with a validated bicinchoninic acid assay for protein quantification and an adenylate kinase assay for cytotoxicity assessment.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Quantification of Oxidized and Reduced Forms of Glutathione Using Ortho -phthalaldehyde in Cultured Mammalian Cells In Vitro.\",\"authors\":\"Craig McBeth, David Brown, Pawel Pokorski, Lydia Lei, Vicki Stone\",\"doi\":\"10.3791/66267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glutathione has long been considered a key biomarker for determining the antioxidant response of the cell. Hence, it is a primary marker for reactive oxygen species studies. The method utilizes Ortho-phthalaldehyde (OPA) to quantify the cellular concentration of glutathione(s). OPA conjugates with reduced glutathione (GSH) via sulfhydryl binding to subsequently form an isoindole, resulting in a highly fluorescent conjugate. To attain an accurate result of both oxidized glutathione (GSSG) and GSH, a combination of masking agents and reducing agents, which have been implemented in this protocol, are required. Treatments may also impact cellular viability. Hence, normalization via protein assay is presented in this multiparametric assay. The assay demonstrates a pseudo-linear detection range of 0.234 - 30µM (R<sup>2</sup>=0.9932±0.007 (N=12)) specific to GSH. The proposed assay also allows for the determination of oxidized glutathione with the addition of the masking agent N-ethylmaleimide to bind reduced glutathione, and the reducing agent tris(2-carboxyethyl) phosphine is introduced to cleave the disulfide bond in GSSG to produce two molecules of GSH. The assay is used in combination with a validated bicinchoninic acid assay for protein quantification and an adenylate kinase assay for cytotoxicity assessment.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/66267\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/66267","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Rapid Quantification of Oxidized and Reduced Forms of Glutathione Using Ortho -phthalaldehyde in Cultured Mammalian Cells In Vitro.
Glutathione has long been considered a key biomarker for determining the antioxidant response of the cell. Hence, it is a primary marker for reactive oxygen species studies. The method utilizes Ortho-phthalaldehyde (OPA) to quantify the cellular concentration of glutathione(s). OPA conjugates with reduced glutathione (GSH) via sulfhydryl binding to subsequently form an isoindole, resulting in a highly fluorescent conjugate. To attain an accurate result of both oxidized glutathione (GSSG) and GSH, a combination of masking agents and reducing agents, which have been implemented in this protocol, are required. Treatments may also impact cellular viability. Hence, normalization via protein assay is presented in this multiparametric assay. The assay demonstrates a pseudo-linear detection range of 0.234 - 30µM (R2=0.9932±0.007 (N=12)) specific to GSH. The proposed assay also allows for the determination of oxidized glutathione with the addition of the masking agent N-ethylmaleimide to bind reduced glutathione, and the reducing agent tris(2-carboxyethyl) phosphine is introduced to cleave the disulfide bond in GSSG to produce two molecules of GSH. The assay is used in combination with a validated bicinchoninic acid assay for protein quantification and an adenylate kinase assay for cytotoxicity assessment.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.