FOXM1/DEPDC1 反馈环促进了肝癌的发生,是很有希望的癌症治疗靶点。

IF 4.5 2区 医学 Q1 ONCOLOGY Cancer Science Pub Date : 2024-07-14 DOI:10.1111/cas.16273
Teng Wei, Chenquan Zeng, Qineng Li, Zhiyuan Xiao, Leisheng Zhang, Qiangnu Zhang, Lili Ren
{"title":"FOXM1/DEPDC1 反馈环促进了肝癌的发生,是很有希望的癌症治疗靶点。","authors":"Teng Wei,&nbsp;Chenquan Zeng,&nbsp;Qineng Li,&nbsp;Zhiyuan Xiao,&nbsp;Leisheng Zhang,&nbsp;Qiangnu Zhang,&nbsp;Lili Ren","doi":"10.1111/cas.16273","DOIUrl":null,"url":null,"abstract":"<p><i>Forkhead box M1</i> (FOXM1) is a key regulator of mitosis and is identified as an oncogene involved in several kinds of human malignancies. However, how it induces carcinogenesis and related therapeutic approaches remains not fully understood. In this study, we aimed to identify a regulatory axis involving FOXM1 and its target gene <i>DEP domain containing 1</i> (DEPDC1) and investigate their biological functions. FOXM1 bound to the promoter and transcriptionally induced DEPDC1 expression, in turn, DEPDC1 physically interacted with FOXM1, promoted its nuclear translocation, and reinforced its transcriptional activities. The FOXM1/DEPDC1 axis was indispensable for cancer cells, as evidenced by the fact that DEPDC1 rescued cell growth inhibition caused by FOXM1 knockdown, and silencing DEPDC1 efficiently attenuated tumor growth in a murine hepatocellular carcinoma model. Furthermore, strong positive associations between FOXM1/DEPDC1 axis and poor clinical outcome were observed in human hepatocellular carcinoma samples, further indicating their significance for hepatocarcinogenesis. Finally, we attempted to exploit immunotherapy approaches to target the FOXM1/DEPDC1 axis. Several HLA-A24:02-restricted T-cell epitopes targeting FOXM1 or DEPDC1 were identified through bioinformatic analysis. Then, T cell receptor (TCR)-engineered T cells targeting FOXM1<sub>262-270</sub> or DEPDC1<sub>294-302</sub> were successfully established and proved to efficiently eradicate tumor cells. Our findings highlight the significance of the FOXM1/DEPDC1 axis in the process of oncogenesis and indicate their potential as immunotherapy targets.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"115 9","pages":"3041-3053"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.16273","citationCount":"0","resultStr":"{\"title\":\"FOXM1/DEPDC1 feedback loop promotes hepatocarcinogenesis and represents promising targets for cancer therapy\",\"authors\":\"Teng Wei,&nbsp;Chenquan Zeng,&nbsp;Qineng Li,&nbsp;Zhiyuan Xiao,&nbsp;Leisheng Zhang,&nbsp;Qiangnu Zhang,&nbsp;Lili Ren\",\"doi\":\"10.1111/cas.16273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Forkhead box M1</i> (FOXM1) is a key regulator of mitosis and is identified as an oncogene involved in several kinds of human malignancies. However, how it induces carcinogenesis and related therapeutic approaches remains not fully understood. In this study, we aimed to identify a regulatory axis involving FOXM1 and its target gene <i>DEP domain containing 1</i> (DEPDC1) and investigate their biological functions. FOXM1 bound to the promoter and transcriptionally induced DEPDC1 expression, in turn, DEPDC1 physically interacted with FOXM1, promoted its nuclear translocation, and reinforced its transcriptional activities. The FOXM1/DEPDC1 axis was indispensable for cancer cells, as evidenced by the fact that DEPDC1 rescued cell growth inhibition caused by FOXM1 knockdown, and silencing DEPDC1 efficiently attenuated tumor growth in a murine hepatocellular carcinoma model. Furthermore, strong positive associations between FOXM1/DEPDC1 axis and poor clinical outcome were observed in human hepatocellular carcinoma samples, further indicating their significance for hepatocarcinogenesis. Finally, we attempted to exploit immunotherapy approaches to target the FOXM1/DEPDC1 axis. Several HLA-A24:02-restricted T-cell epitopes targeting FOXM1 or DEPDC1 were identified through bioinformatic analysis. Then, T cell receptor (TCR)-engineered T cells targeting FOXM1<sub>262-270</sub> or DEPDC1<sub>294-302</sub> were successfully established and proved to efficiently eradicate tumor cells. Our findings highlight the significance of the FOXM1/DEPDC1 axis in the process of oncogenesis and indicate their potential as immunotherapy targets.</p>\",\"PeriodicalId\":9580,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\"115 9\",\"pages\":\"3041-3053\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.16273\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cas.16273\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.16273","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

叉头盒 M1(FOXM1)是有丝分裂的关键调节因子,已被确定为涉及多种人类恶性肿瘤的癌基因。然而,人们对它如何诱导癌变以及相关的治疗方法仍不完全了解。本研究旨在确定涉及 FOXM1 及其靶基因 DEP domain containing 1(DEPDC1)的调控轴,并研究它们的生物学功能。FOXM1与启动子结合并转录诱导DEPDC1的表达,反过来,DEPDC1与FOXM1发生物理相互作用,促进其核转位并加强其转录活性。FOXM1/DEPDC1轴对癌细胞来说是不可或缺的,DEPDC1能挽救FOXM1敲除导致的细胞生长抑制,在小鼠肝细胞癌模型中,沉默DEPDC1能有效抑制肿瘤生长。此外,在人类肝细胞癌样本中观察到 FOXM1/DEPDC1 轴与不良临床预后之间存在很强的正相关性,这进一步表明了它们在肝癌发生中的重要性。最后,我们尝试利用免疫疗法来靶向 FOXM1/DEPDC1 轴。通过生物信息学分析,我们确定了几个以 FOXM1 或 DEPDC1 为靶点的 HLA-A24:02 限制性 T 细胞表位。然后,成功建立了以FOXM1262-270或DEPDC1294-302为靶点的T细胞受体(TCR)工程T细胞,并证明它们能有效地消灭肿瘤细胞。我们的研究结果突显了FOXM1/DEPDC1轴在肿瘤发生过程中的重要作用,并显示了它们作为免疫疗法靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FOXM1/DEPDC1 feedback loop promotes hepatocarcinogenesis and represents promising targets for cancer therapy

Forkhead box M1 (FOXM1) is a key regulator of mitosis and is identified as an oncogene involved in several kinds of human malignancies. However, how it induces carcinogenesis and related therapeutic approaches remains not fully understood. In this study, we aimed to identify a regulatory axis involving FOXM1 and its target gene DEP domain containing 1 (DEPDC1) and investigate their biological functions. FOXM1 bound to the promoter and transcriptionally induced DEPDC1 expression, in turn, DEPDC1 physically interacted with FOXM1, promoted its nuclear translocation, and reinforced its transcriptional activities. The FOXM1/DEPDC1 axis was indispensable for cancer cells, as evidenced by the fact that DEPDC1 rescued cell growth inhibition caused by FOXM1 knockdown, and silencing DEPDC1 efficiently attenuated tumor growth in a murine hepatocellular carcinoma model. Furthermore, strong positive associations between FOXM1/DEPDC1 axis and poor clinical outcome were observed in human hepatocellular carcinoma samples, further indicating their significance for hepatocarcinogenesis. Finally, we attempted to exploit immunotherapy approaches to target the FOXM1/DEPDC1 axis. Several HLA-A24:02-restricted T-cell epitopes targeting FOXM1 or DEPDC1 were identified through bioinformatic analysis. Then, T cell receptor (TCR)-engineered T cells targeting FOXM1262-270 or DEPDC1294-302 were successfully established and proved to efficiently eradicate tumor cells. Our findings highlight the significance of the FOXM1/DEPDC1 axis in the process of oncogenesis and indicate their potential as immunotherapy targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Science
Cancer Science 医学-肿瘤学
自引率
3.50%
发文量
406
审稿时长
2 months
期刊介绍: Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports. Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.
期刊最新文献
Issue Information In this issue Issue Information In this issue Real-world genome profiling in Japanese patients with pancreatic ductal adenocarcinoma focusing on HRD implications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1