基于柠檬酸/酒石酸/苹果酸添加剂的聚乙烯醇-淀粉复合薄膜的功效比较

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Mechanical and Materials Engineering Pub Date : 2024-07-15 DOI:10.1186/s40712-024-00151-1
Aritra Das, Muktashree Saha, Manish Kumar Gupta, Latha Rangan, Ramagopal Uppaluri, Chandan Das
{"title":"基于柠檬酸/酒石酸/苹果酸添加剂的聚乙烯醇-淀粉复合薄膜的功效比较","authors":"Aritra Das,&nbsp;Muktashree Saha,&nbsp;Manish Kumar Gupta,&nbsp;Latha Rangan,&nbsp;Ramagopal Uppaluri,&nbsp;Chandan Das","doi":"10.1186/s40712-024-00151-1","DOIUrl":null,"url":null,"abstract":"<div><p>To ascertain upon the ideal configuration of physico-mechanical qualities, efficient processing techniques, and network stability of the prepared bio-composite films in real-world applications, the polymeric materials shall be subjected to a careful manipulation. Such bio-composite films have outstanding combinations of biocompatibility and toxicity-associated safety qualities. Such research interventions will be beneficial for the packaging, pharmaceutical, and biomedical industries that wish to target and adopt them for commercial applications. In this article, three alternate organic acids, i.e., citric acid (CA), tartaric acid (TA), and malic acid (MA), are blended separately into polyvinyl alcohol (PVA)-starch (St)-glycerol (Gl) composite films and for the targeted purpose of enhanced crosslinking, plasticizing, and antibacterial capability of the polymer network. The organic acid-based bio-composite polymeric films were assessed in terms of swelling index (SI), in vitro degradation, tensile strength (TS), percentage elongation (%E), antibacterial activity, and cytotoxicity attributes. Among these, the MA-based PVA composite films outperformed the CA-based PVA composite film in terms of absorbency (SI 739.29%), mechanical strength (TS 4.88 MPa), and elasticity (%E 103.68%). Furthermore, following a 24-h incubation period, the MA-based films exhibited the highest proliferative effect of 215.59% for the HEK cells. In conclusion, the MA has been inferred to be the most relevant organic acid for the desired optimality of film composition, physical and biological properties, and cost.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00151-1","citationCount":"0","resultStr":"{\"title\":\"Comparative efficacy of citric acid/tartaric acid/malic acid additive-based polyvinyl alcohol-starch composite films\",\"authors\":\"Aritra Das,&nbsp;Muktashree Saha,&nbsp;Manish Kumar Gupta,&nbsp;Latha Rangan,&nbsp;Ramagopal Uppaluri,&nbsp;Chandan Das\",\"doi\":\"10.1186/s40712-024-00151-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To ascertain upon the ideal configuration of physico-mechanical qualities, efficient processing techniques, and network stability of the prepared bio-composite films in real-world applications, the polymeric materials shall be subjected to a careful manipulation. Such bio-composite films have outstanding combinations of biocompatibility and toxicity-associated safety qualities. Such research interventions will be beneficial for the packaging, pharmaceutical, and biomedical industries that wish to target and adopt them for commercial applications. In this article, three alternate organic acids, i.e., citric acid (CA), tartaric acid (TA), and malic acid (MA), are blended separately into polyvinyl alcohol (PVA)-starch (St)-glycerol (Gl) composite films and for the targeted purpose of enhanced crosslinking, plasticizing, and antibacterial capability of the polymer network. The organic acid-based bio-composite polymeric films were assessed in terms of swelling index (SI), in vitro degradation, tensile strength (TS), percentage elongation (%E), antibacterial activity, and cytotoxicity attributes. Among these, the MA-based PVA composite films outperformed the CA-based PVA composite film in terms of absorbency (SI 739.29%), mechanical strength (TS 4.88 MPa), and elasticity (%E 103.68%). Furthermore, following a 24-h incubation period, the MA-based films exhibited the highest proliferative effect of 215.59% for the HEK cells. In conclusion, the MA has been inferred to be the most relevant organic acid for the desired optimality of film composition, physical and biological properties, and cost.</p></div>\",\"PeriodicalId\":592,\"journal\":{\"name\":\"International Journal of Mechanical and Materials Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00151-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40712-024-00151-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-024-00151-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了确定制备的生物复合膜在实际应用中的物理机械质量、高效加工技术和网络稳定性的理想配置,必须对聚合物材料进行精心处理。这种生物复合薄膜具有出色的生物相容性和毒性相关安全性。这些研究措施将有利于包装、制药和生物医学行业将其作为商业应用的目标并加以采用。本文将柠檬酸(CA)、酒石酸(TA)和苹果酸(MA)这三种交替有机酸分别混入聚乙烯醇(PVA)-淀粉(St)-甘油(Gl)复合薄膜中,目的是增强聚合物网络的交联、塑化和抗菌能力。对有机酸基生物复合聚合物薄膜的溶胀指数(SI)、体外降解、拉伸强度(TS)、伸长率(%E)、抗菌活性和细胞毒性属性进行了评估。其中,基于 MA 的 PVA 复合薄膜在吸收性(SI 739.29%)、机械强度(TS 4.88 兆帕)和弹性(%E 103.68%)方面均优于基于 CA 的 PVA 复合薄膜。此外,在 24 小时的培养期后,基于 MA 的薄膜对 HEK 细胞的增殖效果最高,达到 215.59%。总之,MA 被推断为最适合实现薄膜成分、物理和生物特性以及成本最优化的有机酸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative efficacy of citric acid/tartaric acid/malic acid additive-based polyvinyl alcohol-starch composite films

To ascertain upon the ideal configuration of physico-mechanical qualities, efficient processing techniques, and network stability of the prepared bio-composite films in real-world applications, the polymeric materials shall be subjected to a careful manipulation. Such bio-composite films have outstanding combinations of biocompatibility and toxicity-associated safety qualities. Such research interventions will be beneficial for the packaging, pharmaceutical, and biomedical industries that wish to target and adopt them for commercial applications. In this article, three alternate organic acids, i.e., citric acid (CA), tartaric acid (TA), and malic acid (MA), are blended separately into polyvinyl alcohol (PVA)-starch (St)-glycerol (Gl) composite films and for the targeted purpose of enhanced crosslinking, plasticizing, and antibacterial capability of the polymer network. The organic acid-based bio-composite polymeric films were assessed in terms of swelling index (SI), in vitro degradation, tensile strength (TS), percentage elongation (%E), antibacterial activity, and cytotoxicity attributes. Among these, the MA-based PVA composite films outperformed the CA-based PVA composite film in terms of absorbency (SI 739.29%), mechanical strength (TS 4.88 MPa), and elasticity (%E 103.68%). Furthermore, following a 24-h incubation period, the MA-based films exhibited the highest proliferative effect of 215.59% for the HEK cells. In conclusion, the MA has been inferred to be the most relevant organic acid for the desired optimality of film composition, physical and biological properties, and cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊最新文献
Biopolymer-based composites for sustainable energy storage: recent developments and future outlook A novel acoustic micro-perforated panel (MPP) based on sugarcane fibers and bagasse Three new reduced forms of synthesized Schiff bases as potent anti-corrosion inhibitors for carbon steel in artificial seawater Expounding the application of nano and micro silica as a complementary additive in metakaolin phosphate geopolymer for ceramic applications—micro and nanoscale structural investigation Upcycling sugar beet waste into sustainable organo-nanocatalysis for carbon dioxide fixation and cyclic carbonate synthesis: a research design study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1