{"title":"作为血管内皮生长因子受体选择性抑制剂的萘咪唑并[1,2-b]哒嗪混合衍生物的设计、合成和生物学评价。","authors":"Shuang Wang, LinLing Gan, Lei Han, Ping Deng, Yihao Li, Dongxiao He, Haoze Chi, Liwei Zhu, Yuehui Li, Rui Long, Zongjie Gan","doi":"10.1002/ardp.202400411","DOIUrl":null,"url":null,"abstract":"<p>The vascular endothelial growth factor receptor (VEGFR) is a receptor tyrosine kinase that is regarded as an emerging target for abnormal angiogenesis diseases. In this study, novel naphthalene imidazo[1,2-<i>b</i>]pyridazine hybrids as VEGFR selective inhibitors were designed and synthesized using a scaffold hopping strategy based on ponatinib, a multitarget kinase inhibitor. Among the evaluated compounds, derivative <b>9k</b> (WS-011) demonstrated the most potent inhibitory potency against VEGFR-2 (IC<sub>50</sub> = 8.4 nM) and displayed superior VEGFR selectivity over a panel of 70 kinases compared with ponatinib. Furthermore, <b>9k</b> possessed good cytotoxic effects on various cancer cell lines, especially the colon cancer HT-29 cells, with an acceptable oral bioavailability. Moreover, <b>9k</b> significantly inhibited the migration and invasion of human umbilical vein endothelial cells (HUVEC) cells and induced apoptosis through the upregulation of apoptotic proteins in HT-29 cells. <b>9k</b> also effectively suppressed the activation of VEGFR-2 signaling pathways, which in turn inhibited the growth of HT-29 cells and the tube formation of HUVECs in vitro. All of the findings revealed that <b>9k</b> could be considered a promising antiangiogenesis lead that merits further investigation.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"357 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis, and biological evaluation of naphthalene imidazo[1,2-b]pyridazine hybrid derivatives as VEGFR selective inhibitors\",\"authors\":\"Shuang Wang, LinLing Gan, Lei Han, Ping Deng, Yihao Li, Dongxiao He, Haoze Chi, Liwei Zhu, Yuehui Li, Rui Long, Zongjie Gan\",\"doi\":\"10.1002/ardp.202400411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The vascular endothelial growth factor receptor (VEGFR) is a receptor tyrosine kinase that is regarded as an emerging target for abnormal angiogenesis diseases. In this study, novel naphthalene imidazo[1,2-<i>b</i>]pyridazine hybrids as VEGFR selective inhibitors were designed and synthesized using a scaffold hopping strategy based on ponatinib, a multitarget kinase inhibitor. Among the evaluated compounds, derivative <b>9k</b> (WS-011) demonstrated the most potent inhibitory potency against VEGFR-2 (IC<sub>50</sub> = 8.4 nM) and displayed superior VEGFR selectivity over a panel of 70 kinases compared with ponatinib. Furthermore, <b>9k</b> possessed good cytotoxic effects on various cancer cell lines, especially the colon cancer HT-29 cells, with an acceptable oral bioavailability. Moreover, <b>9k</b> significantly inhibited the migration and invasion of human umbilical vein endothelial cells (HUVEC) cells and induced apoptosis through the upregulation of apoptotic proteins in HT-29 cells. <b>9k</b> also effectively suppressed the activation of VEGFR-2 signaling pathways, which in turn inhibited the growth of HT-29 cells and the tube formation of HUVECs in vitro. All of the findings revealed that <b>9k</b> could be considered a promising antiangiogenesis lead that merits further investigation.</p>\",\"PeriodicalId\":128,\"journal\":{\"name\":\"Archiv der Pharmazie\",\"volume\":\"357 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Pharmazie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400411\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400411","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Design, synthesis, and biological evaluation of naphthalene imidazo[1,2-b]pyridazine hybrid derivatives as VEGFR selective inhibitors
The vascular endothelial growth factor receptor (VEGFR) is a receptor tyrosine kinase that is regarded as an emerging target for abnormal angiogenesis diseases. In this study, novel naphthalene imidazo[1,2-b]pyridazine hybrids as VEGFR selective inhibitors were designed and synthesized using a scaffold hopping strategy based on ponatinib, a multitarget kinase inhibitor. Among the evaluated compounds, derivative 9k (WS-011) demonstrated the most potent inhibitory potency against VEGFR-2 (IC50 = 8.4 nM) and displayed superior VEGFR selectivity over a panel of 70 kinases compared with ponatinib. Furthermore, 9k possessed good cytotoxic effects on various cancer cell lines, especially the colon cancer HT-29 cells, with an acceptable oral bioavailability. Moreover, 9k significantly inhibited the migration and invasion of human umbilical vein endothelial cells (HUVEC) cells and induced apoptosis through the upregulation of apoptotic proteins in HT-29 cells. 9k also effectively suppressed the activation of VEGFR-2 signaling pathways, which in turn inhibited the growth of HT-29 cells and the tube formation of HUVECs in vitro. All of the findings revealed that 9k could be considered a promising antiangiogenesis lead that merits further investigation.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.