Homburg-Adelaide 散光人工晶体提名图:如何在散光人工晶体植入术中根据术前 IOLMaster 700 角膜测量和总角膜力预测角膜力向量。

IF 3 3区 医学 Q1 OPHTHALMOLOGY Acta Ophthalmologica Pub Date : 2024-07-16 DOI:10.1111/aos.16742
Achim Langenbucher, Nóra Szentmáry, Jascha Wendelstein, Alan Cayless, Peter Hoffmann, Michael Goggin
{"title":"Homburg-Adelaide 散光人工晶体提名图:如何在散光人工晶体植入术中根据术前 IOLMaster 700 角膜测量和总角膜力预测角膜力向量。","authors":"Achim Langenbucher, Nóra Szentmáry, Jascha Wendelstein, Alan Cayless, Peter Hoffmann, Michael Goggin","doi":"10.1111/aos.16742","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study is to compare the reconstructed corneal power (RCP) by working backwards from the post-implantation spectacle refraction and toric intraocular lens power and to develop the models for mapping preoperative keratometry and total corneal power to RCP.</p><p><strong>Methods: </strong>Retrospective single-centre study involving 442 eyes treated with a monofocal and trifocal toric IOL (Zeiss TORBI and LISA). Keratometry and total corneal power were measured preoperatively and postoperatively using IOLMaster 700. Feedforward neural network and multilinear regression models were derived to map keratometry and total corneal power vector components (equivalent power EQ and astigmatism components C0 and C45) to the respective RCP components.</p><p><strong>Results: </strong>Mean preoperative/postoperative C0 for keratometry and total corneal power was -0.14/-0.08 dioptres and -0.30/-0.24 dioptres. All mean C45 components ranged between -0.11 and -0.20 dioptres. With crossvalidation, the neural network and regression models showed comparable results on the test data with a mean squared prediction error of 0.20/0.18 and 0.22/0.22 dioptres<sup>2</sup> and on the training data the neural network models outperformed the regression models with 0.11/0.12 and 0.22/0.22 dioptres<sup>2</sup> for predicting RCP from preoperative keratometry/total corneal power.</p><p><strong>Conclusions: </strong>Based on our dataset, both the feedforward neural network and multilinear regression models showed good precision in predicting the power vector components of RCP from preoperative keratometry or total corneal power. With a similar performance in crossvalidation and a simple implementation in consumer software, we recommend implementation of regression models in clinical practice.</p>","PeriodicalId":6915,"journal":{"name":"Acta Ophthalmologica","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Homburg-Adelaide toric IOL nomogram: How to predict corneal power vectors from preoperative IOLMaster 700 keratometry and total corneal power in toric IOL implantation.\",\"authors\":\"Achim Langenbucher, Nóra Szentmáry, Jascha Wendelstein, Alan Cayless, Peter Hoffmann, Michael Goggin\",\"doi\":\"10.1111/aos.16742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The purpose of this study is to compare the reconstructed corneal power (RCP) by working backwards from the post-implantation spectacle refraction and toric intraocular lens power and to develop the models for mapping preoperative keratometry and total corneal power to RCP.</p><p><strong>Methods: </strong>Retrospective single-centre study involving 442 eyes treated with a monofocal and trifocal toric IOL (Zeiss TORBI and LISA). Keratometry and total corneal power were measured preoperatively and postoperatively using IOLMaster 700. Feedforward neural network and multilinear regression models were derived to map keratometry and total corneal power vector components (equivalent power EQ and astigmatism components C0 and C45) to the respective RCP components.</p><p><strong>Results: </strong>Mean preoperative/postoperative C0 for keratometry and total corneal power was -0.14/-0.08 dioptres and -0.30/-0.24 dioptres. All mean C45 components ranged between -0.11 and -0.20 dioptres. With crossvalidation, the neural network and regression models showed comparable results on the test data with a mean squared prediction error of 0.20/0.18 and 0.22/0.22 dioptres<sup>2</sup> and on the training data the neural network models outperformed the regression models with 0.11/0.12 and 0.22/0.22 dioptres<sup>2</sup> for predicting RCP from preoperative keratometry/total corneal power.</p><p><strong>Conclusions: </strong>Based on our dataset, both the feedforward neural network and multilinear regression models showed good precision in predicting the power vector components of RCP from preoperative keratometry or total corneal power. With a similar performance in crossvalidation and a simple implementation in consumer software, we recommend implementation of regression models in clinical practice.</p>\",\"PeriodicalId\":6915,\"journal\":{\"name\":\"Acta Ophthalmologica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Ophthalmologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/aos.16742\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Ophthalmologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/aos.16742","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究的目的是通过从植入后的眼镜屈光度和散光人工晶体功率倒推,比较重建的角膜功率(RCP),并开发将术前角膜测量和总角膜功率映射到 RCP 的模型:回顾性单中心研究,涉及442只使用单焦和三焦散光人工晶体(蔡司TORBI和LISA)治疗的眼睛。术前和术后使用 IOLMaster 700 测量角膜度数和总角膜力。通过前馈神经网络和多线性回归模型,将角膜度数和总角膜功率矢量成分(等效功率 EQ 和散光成分 C0 和 C45)映射到相应的 RCP 成分:结果:角膜测量和总角膜力的术前/术后C0平均值分别为-0.14/-0.08屈光度和-0.30/-0.24屈光度。所有平均 C45 分量介于 -0.11 和 -0.20 屈光度之间。通过交叉验证,神经网络和回归模型在测试数据上的结果相当,平均预测平方误差分别为0.20/0.18和0.22/0.22屈光度2,而在训练数据上,神经网络模型根据术前角膜屈光度/角膜总功率预测RCP的结果优于回归模型,分别为0.11/0.12和0.22/0.22屈光度2:根据我们的数据集,前馈神经网络和多线性回归模型在根据术前角膜屈光度或角膜总功率预测RCP的功率矢量成分方面都表现出了良好的精确性。这两种模型在交叉验证中的表现相似,而且在消费者软件中的实施也很简单,因此我们建议在临床实践中使用回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Homburg-Adelaide toric IOL nomogram: How to predict corneal power vectors from preoperative IOLMaster 700 keratometry and total corneal power in toric IOL implantation.

Purpose: The purpose of this study is to compare the reconstructed corneal power (RCP) by working backwards from the post-implantation spectacle refraction and toric intraocular lens power and to develop the models for mapping preoperative keratometry and total corneal power to RCP.

Methods: Retrospective single-centre study involving 442 eyes treated with a monofocal and trifocal toric IOL (Zeiss TORBI and LISA). Keratometry and total corneal power were measured preoperatively and postoperatively using IOLMaster 700. Feedforward neural network and multilinear regression models were derived to map keratometry and total corneal power vector components (equivalent power EQ and astigmatism components C0 and C45) to the respective RCP components.

Results: Mean preoperative/postoperative C0 for keratometry and total corneal power was -0.14/-0.08 dioptres and -0.30/-0.24 dioptres. All mean C45 components ranged between -0.11 and -0.20 dioptres. With crossvalidation, the neural network and regression models showed comparable results on the test data with a mean squared prediction error of 0.20/0.18 and 0.22/0.22 dioptres2 and on the training data the neural network models outperformed the regression models with 0.11/0.12 and 0.22/0.22 dioptres2 for predicting RCP from preoperative keratometry/total corneal power.

Conclusions: Based on our dataset, both the feedforward neural network and multilinear regression models showed good precision in predicting the power vector components of RCP from preoperative keratometry or total corneal power. With a similar performance in crossvalidation and a simple implementation in consumer software, we recommend implementation of regression models in clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Ophthalmologica
Acta Ophthalmologica 医学-眼科学
CiteScore
7.60
自引率
5.90%
发文量
433
审稿时长
6 months
期刊介绍: Acta Ophthalmologica is published on behalf of the Acta Ophthalmologica Scandinavica Foundation and is the official scientific publication of the following societies: The Danish Ophthalmological Society, The Finnish Ophthalmological Society, The Icelandic Ophthalmological Society, The Norwegian Ophthalmological Society and The Swedish Ophthalmological Society, and also the European Association for Vision and Eye Research (EVER). Acta Ophthalmologica publishes clinical and experimental original articles, reviews, editorials, educational photo essays (Diagnosis and Therapy in Ophthalmology), case reports and case series, letters to the editor and doctoral theses.
期刊最新文献
Efficacy of intravitreal faricimab therapy for polypoidal choroidal vasculopathy: A systematic review and meta-analysis. The ever ongoing cosmetic quest to change eye colour. Slowing myopia progression with cylindrical annular refractive elements (CARE) spectacle lenses-Year 1 results from a 2-year prospective, multi-centre trial. Correlation of retinal fluid and photoreceptor and RPE loss in neovascular AMD by automated quantification, a real-world FRB! analysis. Incidence, risk factors, and patient characteristics in severe contact lens-related microbial keratitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1