{"title":"猪腰椎间盘的水合状态:新鲜标本与冷冻解冻标本的比较","authors":"Concetta Morino, Jason Kait, Cameron R Bass","doi":"10.1007/s10439-024-03577-y","DOIUrl":null,"url":null,"abstract":"<p><p>Water content in intervertebral discs (IVDs) is essential for physiological and mechanical function. Freezing post-mortem tissue prior to biomechanical testing is a common practice to prevent tissue degradation, but this process has been theorized to alter hydration within IVDs. The hydration state throughout porcine lumbar IVDs, a common lumbar surrogate, is unknown as are the effects of freezing on porcine IVD hydration. Nineteen porcine lumbar spines were stored in one of the three conditions: frozen (- 20 °C) wrapped in saline-soaked gauze, frozen (- 20 °C) without saline, or fresh. Water content was measured in four disc regions within each of 89 discs: nucleus pulposus (NP), inner (AF-A), intermediate (AF-B), and outer (AF-C) annulus fibrosus. A three-factor, repeated measure analysis of variance was conducted for storage condition, spinal level, and repeated measure disc region. No significant differences were observed in spinal level or storage condition as a main effect. Mean hydration was significantly different in each disc region with mass percentage of water found to be 88.8 ± 1.7% in NP, 79.6 ± 3.8% in AF-A, 71.9 ± 3.7% in AF-B, and 62.3 ± 3.3% in AF-C. No significant differences were shown in NP and AF-C regions between storage conditions. Two significant differences in storage condition were observed in AF-A and AF-B regions, but there is likely no biological difference in these populations. Water content throughout porcine lumbar IVD was determined and results suggest one freeze-thaw cycle at - 20 °C does not alter the overall hydration within the porcine lumbar IVD.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydration State Throughout Porcine Lumbar Intervertebral Discs: Comparing Fresh and Frozen-Thawed Specimens.\",\"authors\":\"Concetta Morino, Jason Kait, Cameron R Bass\",\"doi\":\"10.1007/s10439-024-03577-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Water content in intervertebral discs (IVDs) is essential for physiological and mechanical function. Freezing post-mortem tissue prior to biomechanical testing is a common practice to prevent tissue degradation, but this process has been theorized to alter hydration within IVDs. The hydration state throughout porcine lumbar IVDs, a common lumbar surrogate, is unknown as are the effects of freezing on porcine IVD hydration. Nineteen porcine lumbar spines were stored in one of the three conditions: frozen (- 20 °C) wrapped in saline-soaked gauze, frozen (- 20 °C) without saline, or fresh. Water content was measured in four disc regions within each of 89 discs: nucleus pulposus (NP), inner (AF-A), intermediate (AF-B), and outer (AF-C) annulus fibrosus. A three-factor, repeated measure analysis of variance was conducted for storage condition, spinal level, and repeated measure disc region. No significant differences were observed in spinal level or storage condition as a main effect. Mean hydration was significantly different in each disc region with mass percentage of water found to be 88.8 ± 1.7% in NP, 79.6 ± 3.8% in AF-A, 71.9 ± 3.7% in AF-B, and 62.3 ± 3.3% in AF-C. No significant differences were shown in NP and AF-C regions between storage conditions. Two significant differences in storage condition were observed in AF-A and AF-B regions, but there is likely no biological difference in these populations. Water content throughout porcine lumbar IVD was determined and results suggest one freeze-thaw cycle at - 20 °C does not alter the overall hydration within the porcine lumbar IVD.</p>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10439-024-03577-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03577-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Hydration State Throughout Porcine Lumbar Intervertebral Discs: Comparing Fresh and Frozen-Thawed Specimens.
Water content in intervertebral discs (IVDs) is essential for physiological and mechanical function. Freezing post-mortem tissue prior to biomechanical testing is a common practice to prevent tissue degradation, but this process has been theorized to alter hydration within IVDs. The hydration state throughout porcine lumbar IVDs, a common lumbar surrogate, is unknown as are the effects of freezing on porcine IVD hydration. Nineteen porcine lumbar spines were stored in one of the three conditions: frozen (- 20 °C) wrapped in saline-soaked gauze, frozen (- 20 °C) without saline, or fresh. Water content was measured in four disc regions within each of 89 discs: nucleus pulposus (NP), inner (AF-A), intermediate (AF-B), and outer (AF-C) annulus fibrosus. A three-factor, repeated measure analysis of variance was conducted for storage condition, spinal level, and repeated measure disc region. No significant differences were observed in spinal level or storage condition as a main effect. Mean hydration was significantly different in each disc region with mass percentage of water found to be 88.8 ± 1.7% in NP, 79.6 ± 3.8% in AF-A, 71.9 ± 3.7% in AF-B, and 62.3 ± 3.3% in AF-C. No significant differences were shown in NP and AF-C regions between storage conditions. Two significant differences in storage condition were observed in AF-A and AF-B regions, but there is likely no biological difference in these populations. Water content throughout porcine lumbar IVD was determined and results suggest one freeze-thaw cycle at - 20 °C does not alter the overall hydration within the porcine lumbar IVD.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.