三维细胞培养支架支持猪诱导多能干细胞衍生的内皮细胞形成毛细血管样网络。

IF 2.9 4区 生物学 Q1 ANATOMY & MORPHOLOGY Cells Tissues Organs Pub Date : 2024-07-16 DOI:10.1159/000539320
Yu-Jing Liao, Yi-Shiou Chen, Yu-Ching Lin, Jenn-Rong Yang
{"title":"三维细胞培养支架支持猪诱导多能干细胞衍生的内皮细胞形成毛细血管样网络。","authors":"Yu-Jing Liao, Yi-Shiou Chen, Yu-Ching Lin, Jenn-Rong Yang","doi":"10.1159/000539320","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Endothelial cells (EC) can be generated from porcine-induced pluripotent stem cells (piPSC), but poor efficiency in driving EC differentiation hampers their application and efficacy. Additionally, the culture of piPSC-derived EC (piPSC-EC) on three-dimensional (3D) scaffolds has not been fully reported yet. Here, we report a method to improve the generation of EC differentiation from piPSC and to facilitate their culture on 3D scaffolds, providing a potential resource for in vitro drug testing and the generation of tissue-engineered vascular grafts.</p><p><strong>Methods: </strong>We initiated the differentiation of piPSC into EC by seeding them on laminin 411 and employing a three-stage protocol, which involved the use of distinct EC differentiation media supplemented with CHIR99021, BMP4, VEGF, and bFGF.</p><p><strong>Results: </strong>piPSC-EC not only expressed EC markers such as CD31, VE-cadherin, and von Willebrand factor (vWF) but also exhibited an upregulation of EC marker genes, including CD31, CD34, VEGFR2, VE-cadherin, and vWF. They exhibited functional characteristics similar to those of porcine coronary artery endothelial cells (PCAEC), such as tube formation and Dil-Ac-LDL uptake. Furthermore, when cultured on 3D scaffolds, piPSC-EC developed a 3D morphology and were capable of forming an endothelial layer and engineering capillary-like networks, though these lacked lumen structures.</p><p><strong>Conclusion: </strong>Our study not only advances the generation of EC from piPSC through an inhibitor and growth factor cocktail but also provides a promising approach for constructing vascular network-like structures. Importantly, these findings open new avenues for drug discovery in vitro and tissue engineering in vivo.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Cell Culture Scaffold Supports Capillary-Like Network Formation by Endothelial Cells Derived from Porcine-Induced Pluripotent Stem Cells.\",\"authors\":\"Yu-Jing Liao, Yi-Shiou Chen, Yu-Ching Lin, Jenn-Rong Yang\",\"doi\":\"10.1159/000539320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Endothelial cells (EC) can be generated from porcine-induced pluripotent stem cells (piPSC), but poor efficiency in driving EC differentiation hampers their application and efficacy. Additionally, the culture of piPSC-derived EC (piPSC-EC) on three-dimensional (3D) scaffolds has not been fully reported yet. Here, we report a method to improve the generation of EC differentiation from piPSC and to facilitate their culture on 3D scaffolds, providing a potential resource for in vitro drug testing and the generation of tissue-engineered vascular grafts.</p><p><strong>Methods: </strong>We initiated the differentiation of piPSC into EC by seeding them on laminin 411 and employing a three-stage protocol, which involved the use of distinct EC differentiation media supplemented with CHIR99021, BMP4, VEGF, and bFGF.</p><p><strong>Results: </strong>piPSC-EC not only expressed EC markers such as CD31, VE-cadherin, and von Willebrand factor (vWF) but also exhibited an upregulation of EC marker genes, including CD31, CD34, VEGFR2, VE-cadherin, and vWF. They exhibited functional characteristics similar to those of porcine coronary artery endothelial cells (PCAEC), such as tube formation and Dil-Ac-LDL uptake. Furthermore, when cultured on 3D scaffolds, piPSC-EC developed a 3D morphology and were capable of forming an endothelial layer and engineering capillary-like networks, though these lacked lumen structures.</p><p><strong>Conclusion: </strong>Our study not only advances the generation of EC from piPSC through an inhibitor and growth factor cocktail but also provides a promising approach for constructing vascular network-like structures. Importantly, these findings open new avenues for drug discovery in vitro and tissue engineering in vivo.</p>\",\"PeriodicalId\":9717,\"journal\":{\"name\":\"Cells Tissues Organs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells Tissues Organs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000539320\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000539320","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导言:内皮细胞(EC)可由猪诱导多能干细胞(piPSC)生成,但驱动EC分化的效率较低,阻碍了其应用和功效。此外,在三维支架上培养 piPSC 衍生的心肌细胞(piPSC-EC)的方法尚未得到充分报道。在此,我们报告了一种改善 piPSC 分化生成 EC 并促进其在三维支架上培养的方法,为体外药物测试和组织工程血管移植物(TEVG)的生成提供了潜在的资源:结果:piPSC-EC 不仅表达了 CD31、VE-cadherin 和 vWF 等 EC 标记,而且还表现出 EC 标记基因的上调,包括 CD31、CD34、VEGFR2、VE-cadherin 和 vWF。它们表现出与猪冠状动脉内皮细胞(PCAECs)相似的功能特征,如管形成和 Dil-Ac-LDL 摄取。此外,在三维支架上培养时,piPSC-EC 形成了三维形态,并能形成内皮层和工程毛细血管样网络,尽管这些网络缺乏管腔结构:我们的研究不仅推进了通过抑制剂和生长因子鸡尾酒从 piPSC 生成 EC 的进程,还为构建血管网络样结构提供了一种前景广阔的方法。重要的是,这些发现为体外药物发现和体内组织工程开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-Dimensional Cell Culture Scaffold Supports Capillary-Like Network Formation by Endothelial Cells Derived from Porcine-Induced Pluripotent Stem Cells.

Introduction: Endothelial cells (EC) can be generated from porcine-induced pluripotent stem cells (piPSC), but poor efficiency in driving EC differentiation hampers their application and efficacy. Additionally, the culture of piPSC-derived EC (piPSC-EC) on three-dimensional (3D) scaffolds has not been fully reported yet. Here, we report a method to improve the generation of EC differentiation from piPSC and to facilitate their culture on 3D scaffolds, providing a potential resource for in vitro drug testing and the generation of tissue-engineered vascular grafts.

Methods: We initiated the differentiation of piPSC into EC by seeding them on laminin 411 and employing a three-stage protocol, which involved the use of distinct EC differentiation media supplemented with CHIR99021, BMP4, VEGF, and bFGF.

Results: piPSC-EC not only expressed EC markers such as CD31, VE-cadherin, and von Willebrand factor (vWF) but also exhibited an upregulation of EC marker genes, including CD31, CD34, VEGFR2, VE-cadherin, and vWF. They exhibited functional characteristics similar to those of porcine coronary artery endothelial cells (PCAEC), such as tube formation and Dil-Ac-LDL uptake. Furthermore, when cultured on 3D scaffolds, piPSC-EC developed a 3D morphology and were capable of forming an endothelial layer and engineering capillary-like networks, though these lacked lumen structures.

Conclusion: Our study not only advances the generation of EC from piPSC through an inhibitor and growth factor cocktail but also provides a promising approach for constructing vascular network-like structures. Importantly, these findings open new avenues for drug discovery in vitro and tissue engineering in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells Tissues Organs
Cells Tissues Organs 生物-发育生物学
CiteScore
4.90
自引率
3.70%
发文量
45
审稿时长
6-12 weeks
期刊介绍: ''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.
期刊最新文献
Spheroid-Hydrogel Integrated Biomimetic System (SHIBS): A New Frontier in Advanced 3D Cell Culture Technology. Selection of the Most Suitable Culture Medium for Patient-Derived Lung Cancer Organoids. Robust Differentiation of Human Pluripotent Stem Cells into Lymphatic Endothelial Cells Using Transcription Factors. Reconsidering Neurogenetic Indication in the Human Brain: Broad Expression of Doublecortin Transcript in the Hippocampal and Cortical Cell Populations. The Effects of Atoh8 on Postnatal Murine Neurogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1