{"title":"用递归神经网络模拟正常和异常电路发展","authors":"Daniel Zavitz, ShiNung Ching, Geoffrey Goodhill","doi":"10.1101/cshperspect.a041507","DOIUrl":null,"url":null,"abstract":"<p><p>Neural development must construct neural circuits that can perform the computations necessary for survival. However, many theoretical models of development do not explicitly address the computational goals of the resulting networks, or computations that evolve in time. Recurrent neural networks (RNNs) have recently come to prominence as both models of neural circuit computation and building blocks of powerful artificial intelligence systems. Here, we review progress in using RNNs for understanding how developmental processes lead to effective computations, and how abnormal development disrupts these computations.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Normal and Abnormal Circuit Development with Recurrent Neural Networks.\",\"authors\":\"Daniel Zavitz, ShiNung Ching, Geoffrey Goodhill\",\"doi\":\"10.1101/cshperspect.a041507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural development must construct neural circuits that can perform the computations necessary for survival. However, many theoretical models of development do not explicitly address the computational goals of the resulting networks, or computations that evolve in time. Recurrent neural networks (RNNs) have recently come to prominence as both models of neural circuit computation and building blocks of powerful artificial intelligence systems. Here, we review progress in using RNNs for understanding how developmental processes lead to effective computations, and how abnormal development disrupts these computations.</p>\",\"PeriodicalId\":10494,\"journal\":{\"name\":\"Cold Spring Harbor perspectives in biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor perspectives in biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/cshperspect.a041507\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041507","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Modeling Normal and Abnormal Circuit Development with Recurrent Neural Networks.
Neural development must construct neural circuits that can perform the computations necessary for survival. However, many theoretical models of development do not explicitly address the computational goals of the resulting networks, or computations that evolve in time. Recurrent neural networks (RNNs) have recently come to prominence as both models of neural circuit computation and building blocks of powerful artificial intelligence systems. Here, we review progress in using RNNs for understanding how developmental processes lead to effective computations, and how abnormal development disrupts these computations.
期刊介绍:
Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.