用于改善膀胱癌治疗的纳米卡介苗免疫疗法。

IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Zhejiang University SCIENCE B Pub Date : 2024-07-11 DOI:10.1631/jzus.B2300392
Sheng Zeng, Shaoqiang Xing, Yifei Zhang, Haifeng Wang, Qian Liu
{"title":"用于改善膀胱癌治疗的纳米卡介苗免疫疗法。","authors":"Sheng Zeng, Shaoqiang Xing, Yifei Zhang, Haifeng Wang, Qian Liu","doi":"10.1631/jzus.B2300392","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer immunotherapy has rapidly become the fourth mainstream treatment alternative after surgery, radiotherapy, and chemotherapy, with some promising results. It aims to kill tumor cells by mobilizing or stimulating cytotoxic immune cells. However, the clinical applications of tumor immunotherapies are limited owing to a lack of adequate delivery pathways and high toxicity. Recently, nanomaterials and genetic engineering have shown great potential in overcoming these limitations by protecting the delivery of antigens, activating targeted T cells, modulating the immunosuppressive tumor microenvironment, and improving the treatment efficacy. Bacillus Calmette-Guérin (BCG) is a live attenuated <i>Mycobacterium bovis</i> vaccine used to prevent tuberculosis, which was first reported to have antitumor activity in 1927. BCG therapy can activate the immune system by inducing various cytokines and chemokines, and its specific immune and inflammatory responses exert antitumor effects. BCG was first used during the 1970s as an intravesical treatment agent for bladder cancer, which effectively improved immune antitumor activity and prevented tumor recurrence. More recently, nano-BCG and genetically engineered BCG have been proposed as treatment alternatives for bladder cancer due to their ability to induce stronger and more stable immune responses. In this study, we outline the development of nano-BCG and genetically engineered BCG for bladder cancer immunotherapy and review their potential and associated challenges.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"25 7","pages":"557-567"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254686/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nano-Bacillus Calmette-Guérin immunotherapies for improved bladder cancer treatment.\",\"authors\":\"Sheng Zeng, Shaoqiang Xing, Yifei Zhang, Haifeng Wang, Qian Liu\",\"doi\":\"10.1631/jzus.B2300392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer immunotherapy has rapidly become the fourth mainstream treatment alternative after surgery, radiotherapy, and chemotherapy, with some promising results. It aims to kill tumor cells by mobilizing or stimulating cytotoxic immune cells. However, the clinical applications of tumor immunotherapies are limited owing to a lack of adequate delivery pathways and high toxicity. Recently, nanomaterials and genetic engineering have shown great potential in overcoming these limitations by protecting the delivery of antigens, activating targeted T cells, modulating the immunosuppressive tumor microenvironment, and improving the treatment efficacy. Bacillus Calmette-Guérin (BCG) is a live attenuated <i>Mycobacterium bovis</i> vaccine used to prevent tuberculosis, which was first reported to have antitumor activity in 1927. BCG therapy can activate the immune system by inducing various cytokines and chemokines, and its specific immune and inflammatory responses exert antitumor effects. BCG was first used during the 1970s as an intravesical treatment agent for bladder cancer, which effectively improved immune antitumor activity and prevented tumor recurrence. More recently, nano-BCG and genetically engineered BCG have been proposed as treatment alternatives for bladder cancer due to their ability to induce stronger and more stable immune responses. In this study, we outline the development of nano-BCG and genetically engineered BCG for bladder cancer immunotherapy and review their potential and associated challenges.</p>\",\"PeriodicalId\":17797,\"journal\":{\"name\":\"Journal of Zhejiang University SCIENCE B\",\"volume\":\"25 7\",\"pages\":\"557-567\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254686/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University SCIENCE B\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.B2300392\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University SCIENCE B","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1631/jzus.B2300392","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症免疫疗法已迅速成为继手术、放疗和化疗之后的第四种主流治疗方法,并取得了一些可喜的成果。其目的是通过动员或刺激细胞毒性免疫细胞来杀死肿瘤细胞。然而,由于缺乏适当的给药途径和高毒性,肿瘤免疫疗法的临床应用受到限制。最近,纳米材料和基因工程通过保护抗原递送、激活靶向 T 细胞、调节免疫抑制肿瘤微环境和提高疗效,在克服这些限制方面显示出巨大潜力。卡介苗(Bacillus Calmette-Guérin,BCG)是一种用于预防结核病的牛分枝杆菌减毒活疫苗,1927 年首次被报道具有抗肿瘤活性。卡介苗疗法可通过诱导各种细胞因子和趋化因子激活免疫系统,其特异性免疫和炎症反应可发挥抗肿瘤作用。卡介苗在 20 世纪 70 年代首次被用作膀胱癌的膀胱内治疗剂,可有效提高免疫抗肿瘤活性,防止肿瘤复发。最近,纳米卡介苗和基因工程卡介苗因能诱导更强、更稳定的免疫反应而被提出作为膀胱癌的替代治疗药物。在本研究中,我们概述了用于膀胱癌免疫疗法的纳米卡介苗和基因工程卡介苗的发展情况,并回顾了它们的潜力和相关挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nano-Bacillus Calmette-Guérin immunotherapies for improved bladder cancer treatment.

Cancer immunotherapy has rapidly become the fourth mainstream treatment alternative after surgery, radiotherapy, and chemotherapy, with some promising results. It aims to kill tumor cells by mobilizing or stimulating cytotoxic immune cells. However, the clinical applications of tumor immunotherapies are limited owing to a lack of adequate delivery pathways and high toxicity. Recently, nanomaterials and genetic engineering have shown great potential in overcoming these limitations by protecting the delivery of antigens, activating targeted T cells, modulating the immunosuppressive tumor microenvironment, and improving the treatment efficacy. Bacillus Calmette-Guérin (BCG) is a live attenuated Mycobacterium bovis vaccine used to prevent tuberculosis, which was first reported to have antitumor activity in 1927. BCG therapy can activate the immune system by inducing various cytokines and chemokines, and its specific immune and inflammatory responses exert antitumor effects. BCG was first used during the 1970s as an intravesical treatment agent for bladder cancer, which effectively improved immune antitumor activity and prevented tumor recurrence. More recently, nano-BCG and genetically engineered BCG have been proposed as treatment alternatives for bladder cancer due to their ability to induce stronger and more stable immune responses. In this study, we outline the development of nano-BCG and genetically engineered BCG for bladder cancer immunotherapy and review their potential and associated challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Zhejiang University SCIENCE B
Journal of Zhejiang University SCIENCE B 生物-生化与分子生物学
CiteScore
8.70
自引率
13.70%
发文量
2125
审稿时长
3.0 months
期刊介绍: Journal of Zheijang University SCIENCE B - Biomedicine & Biotechnology is an international journal that aims to present the latest development and achievements in scientific research in China and abroad to the world’s scientific community. JZUS-B covers research in Biomedicine and Biotechnology and Biochemistry and topics related to life science subjects, such as Plant and Animal Sciences, Environment and Resource etc.
期刊最新文献
ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis. Chronic exposure to hexavalent chromium induces esophageal tumorigenesis via activating the Notch signaling pathway. Artificial intelligence for brain disease diagnosis using electroencephalogram signals. Odor representation and coding by the mitral/tufted cells in the olfactory bulb. Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1