铁硫簇和四氯化碳成分在秀丽隐杆线虫 DOG-1/BRIP1 功能中的关键作用

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2024-09-09 DOI:10.1093/nar/gkae617
Xiao Li, Ivette Maria Menendez Perdomo, Victoria Rodrigues Alves Barbosa, Catherine Diao, Maja Tarailo-Graovac
{"title":"铁硫簇和四氯化碳成分在秀丽隐杆线虫 DOG-1/BRIP1 功能中的关键作用","authors":"Xiao Li, Ivette Maria Menendez Perdomo, Victoria Rodrigues Alves Barbosa, Catherine Diao, Maja Tarailo-Graovac","doi":"10.1093/nar/gkae617","DOIUrl":null,"url":null,"abstract":"<p><p>FANCJ/BRIP1, initially identified as DOG-1 (Deletions Of G-rich DNA) in Caenorhabditis elegans, plays a critical role in genome integrity by facilitating DNA interstrand cross-link repair and resolving G-quadruplex structures. Its function is tightly linked to a conserved [4Fe-4S] cluster-binding motif, mutations of which contribute to Fanconi anemia and various cancers. This study investigates the critical role of the iron-sulfur (Fe-S) cluster in DOG-1 and its relationship with the cytosolic iron-sulfur protein assembly targeting complex (CTC). We found that a DOG-1 mutant, expected to be defective in Fe-S cluster binding, is primarily localized in the cytoplasm, leading to heightened DNA damage sensitivity and G-rich DNA deletions. We further discovered that the deletion of mms-19, a nonessential CTC component, also resulted in DOG-1 sequestered in cytoplasm and increased DNA damage sensitivity. Additionally, we identified that CIAO-1 and CIAO-2B are vital for DOG-1's stability and repair functions but unlike MMS-19 have essential roles in C. elegans. These findings confirm the CTC and Fe-S cluster as key elements in regulating DOG-1, crucial for genome integrity. Additionally, this study advances our understanding of the CTC's role in Fe-S protein regulation and development in C. elegans, offering a model to study its impact on multicellular organism development.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":null,"pages":null},"PeriodicalIF":16.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381322/pdf/","citationCount":"0","resultStr":"{\"title\":\"The critical role of the iron-sulfur cluster and CTC components in DOG-1/BRIP1 function in Caenorhabditis elegans.\",\"authors\":\"Xiao Li, Ivette Maria Menendez Perdomo, Victoria Rodrigues Alves Barbosa, Catherine Diao, Maja Tarailo-Graovac\",\"doi\":\"10.1093/nar/gkae617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>FANCJ/BRIP1, initially identified as DOG-1 (Deletions Of G-rich DNA) in Caenorhabditis elegans, plays a critical role in genome integrity by facilitating DNA interstrand cross-link repair and resolving G-quadruplex structures. Its function is tightly linked to a conserved [4Fe-4S] cluster-binding motif, mutations of which contribute to Fanconi anemia and various cancers. This study investigates the critical role of the iron-sulfur (Fe-S) cluster in DOG-1 and its relationship with the cytosolic iron-sulfur protein assembly targeting complex (CTC). We found that a DOG-1 mutant, expected to be defective in Fe-S cluster binding, is primarily localized in the cytoplasm, leading to heightened DNA damage sensitivity and G-rich DNA deletions. We further discovered that the deletion of mms-19, a nonessential CTC component, also resulted in DOG-1 sequestered in cytoplasm and increased DNA damage sensitivity. Additionally, we identified that CIAO-1 and CIAO-2B are vital for DOG-1's stability and repair functions but unlike MMS-19 have essential roles in C. elegans. These findings confirm the CTC and Fe-S cluster as key elements in regulating DOG-1, crucial for genome integrity. Additionally, this study advances our understanding of the CTC's role in Fe-S protein regulation and development in C. elegans, offering a model to study its impact on multicellular organism development.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381322/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae617\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae617","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

FANCJ/BRIP1最初在草履虫中被鉴定为DOG-1(富含G的DNA缺失),它通过促进DNA链间交联修复和解决G-四联结构,在基因组完整性方面发挥着关键作用。它的功能与一个保守的[4Fe-4S]簇结合基团密切相关,该基团的突变会导致范可尼贫血症和各种癌症。本研究调查了 DOG-1 中铁硫(Fe-S)簇的关键作用及其与细胞质铁硫蛋白组装靶向复合体(CTC)的关系。我们发现,预计在Fe-S簇结合方面存在缺陷的DOG-1突变体主要定位于细胞质,导致DNA损伤敏感性增强和富含G的DNA缺失。我们进一步发现,缺失 mms-19(一种非必要的 CTC 成分)也会导致 DOG-1 固着在细胞质中并增加 DNA 损伤敏感性。此外,我们还发现,CIAO-1 和 CIAO-2B 对 DOG-1 的稳定性和修复功能至关重要,但与 MMS-19 不同,它们在秀丽隐杆线虫中发挥着重要作用。这些发现证实了 CTC 和 Fe-S 簇是调控 DOG-1 的关键因素,对基因组完整性至关重要。此外,这项研究还加深了我们对 CTC 在 elegans 的 Fe-S 蛋白调控和发育中的作用的理解,为研究其对多细胞生物发育的影响提供了一个模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The critical role of the iron-sulfur cluster and CTC components in DOG-1/BRIP1 function in Caenorhabditis elegans.

FANCJ/BRIP1, initially identified as DOG-1 (Deletions Of G-rich DNA) in Caenorhabditis elegans, plays a critical role in genome integrity by facilitating DNA interstrand cross-link repair and resolving G-quadruplex structures. Its function is tightly linked to a conserved [4Fe-4S] cluster-binding motif, mutations of which contribute to Fanconi anemia and various cancers. This study investigates the critical role of the iron-sulfur (Fe-S) cluster in DOG-1 and its relationship with the cytosolic iron-sulfur protein assembly targeting complex (CTC). We found that a DOG-1 mutant, expected to be defective in Fe-S cluster binding, is primarily localized in the cytoplasm, leading to heightened DNA damage sensitivity and G-rich DNA deletions. We further discovered that the deletion of mms-19, a nonessential CTC component, also resulted in DOG-1 sequestered in cytoplasm and increased DNA damage sensitivity. Additionally, we identified that CIAO-1 and CIAO-2B are vital for DOG-1's stability and repair functions but unlike MMS-19 have essential roles in C. elegans. These findings confirm the CTC and Fe-S cluster as key elements in regulating DOG-1, crucial for genome integrity. Additionally, this study advances our understanding of the CTC's role in Fe-S protein regulation and development in C. elegans, offering a model to study its impact on multicellular organism development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
Direct testing of natural twister ribozymes from over a thousand organisms reveals a broad tolerance for structural imperfections. EXPRESSO: a multi-omics database to explore multi-layered 3D genomic organization. GCM and gcType in 2024: comprehensive resources for microbial strains and genomic data. Genomes OnLine Database (GOLD) v.10: new features and updates. RBPWorld for exploring functions and disease associations of RNA-binding proteins across species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1