在新生儿期施用铁元素会改变成年 Sprague-Dawley 大鼠的记忆力、脑单胺水平和 BDNF mRNA 表达。

IF 3.6 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pharmacological Reports Pub Date : 2024-10-01 Epub Date: 2024-07-16 DOI:10.1007/s43440-024-00626-0
Zofia Rogóż, Kinga Kamińska, Elżbieta Lorenc-Koci, Agnieszka Wąsik
{"title":"在新生儿期施用铁元素会改变成年 Sprague-Dawley 大鼠的记忆力、脑单胺水平和 BDNF mRNA 表达。","authors":"Zofia Rogóż, Kinga Kamińska, Elżbieta Lorenc-Koci, Agnieszka Wąsik","doi":"10.1007/s43440-024-00626-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Iron is one of the key microelements in the mammalian body and is the most abundant metal in the brain. Iron, a very important chemical element in the body of mammals, is the most abundant metal in the brain. It participates in many chemical reactions taking place in the central nervous system acting as a cofactor in key enzymatic reactions involved in neurotransmitter synthesis and degradation, dendritic arborization, and myelination. Moreover, iron accumulation in the brain has been implicated in the pathogenesis of neurogenerative disorders.</p><p><strong>Material and methods: </strong>The aim of our study was to assess the influence of iron administered orally (30 mg/kg) to rats in the neonatal period (p12-p14) by testing the performance of rats in the open field and social interaction tests, and by evaluating the recognition memory, monoamine levels in some brain structures, and BDNF mRNA expression. The behavioral and biochemical tests were performed in adult p88-p92 rats.</p><p><strong>Results: </strong>Iron administered to rats in the neonatal period induced long-term deficits in behavioral tests in adult rats. It reduced the exploratory activity in the open field test. In the social interaction test, it induced deficits in the parameters studied, and decreased memory retention. Moreover, iron changed the brain monoamine levels in some studied brain structures and decreased the expression of BDNF mRNA in the hippocampus.</p><p><strong>Conclusions: </strong>All earlier and our present results indicated that iron administered to rats in the neonatal period induced an increase in oxidative stress which resulted in a change in the brain monoamine levels and decreased BDNF mRNA expression which may play a role in iron-induced memory impairment in adult rats.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387440/pdf/","citationCount":"0","resultStr":"{\"title\":\"Iron administered in the neonatal period changed memory, brain monoamine levels, and BDNF mRNA expression in adult Sprague-Dawley rats.\",\"authors\":\"Zofia Rogóż, Kinga Kamińska, Elżbieta Lorenc-Koci, Agnieszka Wąsik\",\"doi\":\"10.1007/s43440-024-00626-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Iron is one of the key microelements in the mammalian body and is the most abundant metal in the brain. Iron, a very important chemical element in the body of mammals, is the most abundant metal in the brain. It participates in many chemical reactions taking place in the central nervous system acting as a cofactor in key enzymatic reactions involved in neurotransmitter synthesis and degradation, dendritic arborization, and myelination. Moreover, iron accumulation in the brain has been implicated in the pathogenesis of neurogenerative disorders.</p><p><strong>Material and methods: </strong>The aim of our study was to assess the influence of iron administered orally (30 mg/kg) to rats in the neonatal period (p12-p14) by testing the performance of rats in the open field and social interaction tests, and by evaluating the recognition memory, monoamine levels in some brain structures, and BDNF mRNA expression. The behavioral and biochemical tests were performed in adult p88-p92 rats.</p><p><strong>Results: </strong>Iron administered to rats in the neonatal period induced long-term deficits in behavioral tests in adult rats. It reduced the exploratory activity in the open field test. In the social interaction test, it induced deficits in the parameters studied, and decreased memory retention. Moreover, iron changed the brain monoamine levels in some studied brain structures and decreased the expression of BDNF mRNA in the hippocampus.</p><p><strong>Conclusions: </strong>All earlier and our present results indicated that iron administered to rats in the neonatal period induced an increase in oxidative stress which resulted in a change in the brain monoamine levels and decreased BDNF mRNA expression which may play a role in iron-induced memory impairment in adult rats.</p>\",\"PeriodicalId\":19947,\"journal\":{\"name\":\"Pharmacological Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387440/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s43440-024-00626-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43440-024-00626-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景:铁是哺乳动物体内重要的微量元素之一,也是大脑中含量最高的金属元素。铁是哺乳动物体内一种非常重要的化学元素,也是大脑中含量最高的金属元素。它参与了中枢神经系统中发生的许多化学反应,是神经递质合成和降解、树突轴化和髓鞘化等关键酶反应的辅助因子。此外,铁在大脑中的积累也与神经退行性疾病的发病机制有关:我们的研究旨在通过测试大鼠在开阔地和社会互动测试中的表现,以及通过评估识别记忆、某些大脑结构中的单胺水平和 BDNF mRNA 表达,来评估新生儿期(p12-p14)大鼠口服铁(30 mg/kg)的影响。行为和生化测试在成年 p88-p92 大鼠中进行:结果:在新生儿期给大鼠施用铁会导致成年大鼠行为测试的长期缺陷。结果:新生儿期给大鼠注射铁会导致成年大鼠行为测试的长期缺陷。在社会交往测试中,铁会导致所研究参数的缺陷,并降低记忆保持能力。此外,铁还改变了一些研究脑结构中的脑单胺水平,并降低了海马中 BDNF mRNA 的表达:所有先前的研究结果和我们目前的研究结果都表明,在新生大鼠体内施用铁会导致氧化应激增加,从而导致脑内单胺水平的变化和 BDNF mRNA 表达的降低,这可能是铁诱导成年大鼠记忆损伤的原因之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iron administered in the neonatal period changed memory, brain monoamine levels, and BDNF mRNA expression in adult Sprague-Dawley rats.

Background: Iron is one of the key microelements in the mammalian body and is the most abundant metal in the brain. Iron, a very important chemical element in the body of mammals, is the most abundant metal in the brain. It participates in many chemical reactions taking place in the central nervous system acting as a cofactor in key enzymatic reactions involved in neurotransmitter synthesis and degradation, dendritic arborization, and myelination. Moreover, iron accumulation in the brain has been implicated in the pathogenesis of neurogenerative disorders.

Material and methods: The aim of our study was to assess the influence of iron administered orally (30 mg/kg) to rats in the neonatal period (p12-p14) by testing the performance of rats in the open field and social interaction tests, and by evaluating the recognition memory, monoamine levels in some brain structures, and BDNF mRNA expression. The behavioral and biochemical tests were performed in adult p88-p92 rats.

Results: Iron administered to rats in the neonatal period induced long-term deficits in behavioral tests in adult rats. It reduced the exploratory activity in the open field test. In the social interaction test, it induced deficits in the parameters studied, and decreased memory retention. Moreover, iron changed the brain monoamine levels in some studied brain structures and decreased the expression of BDNF mRNA in the hippocampus.

Conclusions: All earlier and our present results indicated that iron administered to rats in the neonatal period induced an increase in oxidative stress which resulted in a change in the brain monoamine levels and decreased BDNF mRNA expression which may play a role in iron-induced memory impairment in adult rats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmacological Reports
Pharmacological Reports 医学-药学
CiteScore
8.40
自引率
0.00%
发文量
91
审稿时长
6 months
期刊介绍: Pharmacological Reports publishes articles concerning all aspects of pharmacology, dealing with the action of drugs at a cellular and molecular level, and papers on the relationship between molecular structure and biological activity as well as reports on compounds with well-defined chemical structures. Pharmacological Reports is an open forum to disseminate recent developments in: pharmacology, behavioural brain research, evidence-based complementary biochemical pharmacology, medicinal chemistry and biochemistry, drug discovery, neuro-psychopharmacology and biological psychiatry, neuroscience and neuropharmacology, cellular and molecular neuroscience, molecular biology, cell biology, toxicology. Studies of plant extracts are not suitable for Pharmacological Reports.
期刊最新文献
Personalization of pharmacotherapy with sirolimus based on volumetric absorptive microsampling (VAMS) in pediatric renal transplant recipients-from LC-MS/MS method validation to clinical application. Correction: β-Carboline derivatives are potent against acute myeloid leukemia in vitro and in vivo. Long noncoding RNA MEG3: an active player in fibrosis. c-Myc inhibition and p21 modulation contribute to unsymmetrical bisacridines-induced apoptosis and senescence in pancreatic cancer cells. Targeting glucocorticoid receptor signaling pathway for treatment of stress-related brain disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1