{"title":"用银离子为种子打底可改善铜胁迫下水稻(Oryza sativa L.)植株的生长和理化特性","authors":"Chunyi Mu, Danyu Huang, Min Wang, Yuliang Li, Xiaolei Wang, Dunfeng Si, Cheng Cheng, Chenghao Ge*, Lijuan Zhao and Dongmei Zhou*, ","doi":"10.1021/acsagscitech.4c00177","DOIUrl":null,"url":null,"abstract":"<p >Copper (Cu) contamination in paddy fields leads to excessive Cu in rice grains and a low grain yield, posing a serious threat to sustainable agricultural production. We propose the application of seed priming with silver ions (Ag<sup>+</sup>) as biostimulants to trigger reactive oxygen species (ROS) production and enhance immune responses, thereby improving rice resistance to Cu stress. The results showed that seed priming with 10 μM Ag<sup>+</sup> significantly improved rice tolerance to Cu, increased the fresh biomass by 22.1%, and reduced the Cu content in the roots and shoots by 25.3 and 13.4%, respectively, compared to the hydropriming treatments. Furthermore, seed priming with 10 μM Ag<sup>+</sup> increased nutrient uptake in rice, leading to higher contents of Ca (15.1%), Fe (14.9%), and Mg (10.2%) in the shoots as well as Ca (21.0%), Mn (37.0%), and Mg (29.1%) in the roots. More Cu was immobilized in the root cell wall, thereby significantly enhancing root cell viability, maintaining the root morphology, and reducing malondialdehyde accumulation. Transcriptomics analyses revealed that Ag<sup>+</sup>-priming activated the phytohormone signal transduction and mitogen-activated protein kinase (MAPK) signaling pathway and other kinase signaling pathways in rice roots under Cu stress. These signals triggered the upregulation of defense-related gene expression, including the Cu vesicle transporter gene, oxidoreductase activity genes, and hydrogen peroxide catabolic process genes, amino acid metabolism, purine metabolism, and starch and sucrose metabolism. This study suggests that seed Ag<sup>+</sup>-priming is a simple and effective way to alleviate Cu toxicity and decrease Cu accumulation in rice, which ensures safe rice production in a sustainable way.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 7","pages":"711–722"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seed Priming with Silver Ions Improves Growth and Physicochemical Features of Rice Plants (Oryza sativa L.) under Copper Stress\",\"authors\":\"Chunyi Mu, Danyu Huang, Min Wang, Yuliang Li, Xiaolei Wang, Dunfeng Si, Cheng Cheng, Chenghao Ge*, Lijuan Zhao and Dongmei Zhou*, \",\"doi\":\"10.1021/acsagscitech.4c00177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Copper (Cu) contamination in paddy fields leads to excessive Cu in rice grains and a low grain yield, posing a serious threat to sustainable agricultural production. We propose the application of seed priming with silver ions (Ag<sup>+</sup>) as biostimulants to trigger reactive oxygen species (ROS) production and enhance immune responses, thereby improving rice resistance to Cu stress. The results showed that seed priming with 10 μM Ag<sup>+</sup> significantly improved rice tolerance to Cu, increased the fresh biomass by 22.1%, and reduced the Cu content in the roots and shoots by 25.3 and 13.4%, respectively, compared to the hydropriming treatments. Furthermore, seed priming with 10 μM Ag<sup>+</sup> increased nutrient uptake in rice, leading to higher contents of Ca (15.1%), Fe (14.9%), and Mg (10.2%) in the shoots as well as Ca (21.0%), Mn (37.0%), and Mg (29.1%) in the roots. More Cu was immobilized in the root cell wall, thereby significantly enhancing root cell viability, maintaining the root morphology, and reducing malondialdehyde accumulation. Transcriptomics analyses revealed that Ag<sup>+</sup>-priming activated the phytohormone signal transduction and mitogen-activated protein kinase (MAPK) signaling pathway and other kinase signaling pathways in rice roots under Cu stress. These signals triggered the upregulation of defense-related gene expression, including the Cu vesicle transporter gene, oxidoreductase activity genes, and hydrogen peroxide catabolic process genes, amino acid metabolism, purine metabolism, and starch and sucrose metabolism. This study suggests that seed Ag<sup>+</sup>-priming is a simple and effective way to alleviate Cu toxicity and decrease Cu accumulation in rice, which ensures safe rice production in a sustainable way.</p>\",\"PeriodicalId\":93846,\"journal\":{\"name\":\"ACS agricultural science & technology\",\"volume\":\"4 7\",\"pages\":\"711–722\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS agricultural science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsagscitech.4c00177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.4c00177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
水稻田中的铜(Cu)污染会导致水稻籽粒中铜含量过高、产量过低,对可持续农业生产构成严重威胁。我们建议应用银离子(Ag+)作为生物刺激剂进行种子诱导,以引发活性氧(ROS)产生并增强免疫反应,从而提高水稻对铜胁迫的抗性。结果表明,与水刺处理相比,用 10 μM Ag+ 引种能显著提高水稻对铜的耐受性,新鲜生物量增加了 22.1%,根和芽中的铜含量分别降低了 25.3% 和 13.4%。此外,用 10 μM Ag+ 给种子打底可增加水稻对养分的吸收,从而提高芽中钙(15.1%)、铁(14.9%)和镁(10.2%)的含量,以及根中钙(21.0%)、锰(37.0%)和镁(29.1%)的含量。更多的铜被固定在根细胞壁中,从而显著提高了根细胞的活力,保持了根的形态,并减少了丙二醛的积累。转录组学分析表明,Ag+-priming 激活了 Cu 胁迫下水稻根部的植物激素信号转导和丝裂原活化蛋白激酶(MAPK)信号通路以及其他激酶信号通路。这些信号引发了防御相关基因表达的上调,包括 Cu 囊泡转运体基因、氧化还原酶活性基因、过氧化氢分解过程基因、氨基酸代谢、嘌呤代谢、淀粉和蔗糖代谢等。这项研究表明,种子Ag+-priming是缓解水稻Cu毒性和减少Cu积累的一种简单而有效的方法,可确保水稻的可持续安全生产。
Seed Priming with Silver Ions Improves Growth and Physicochemical Features of Rice Plants (Oryza sativa L.) under Copper Stress
Copper (Cu) contamination in paddy fields leads to excessive Cu in rice grains and a low grain yield, posing a serious threat to sustainable agricultural production. We propose the application of seed priming with silver ions (Ag+) as biostimulants to trigger reactive oxygen species (ROS) production and enhance immune responses, thereby improving rice resistance to Cu stress. The results showed that seed priming with 10 μM Ag+ significantly improved rice tolerance to Cu, increased the fresh biomass by 22.1%, and reduced the Cu content in the roots and shoots by 25.3 and 13.4%, respectively, compared to the hydropriming treatments. Furthermore, seed priming with 10 μM Ag+ increased nutrient uptake in rice, leading to higher contents of Ca (15.1%), Fe (14.9%), and Mg (10.2%) in the shoots as well as Ca (21.0%), Mn (37.0%), and Mg (29.1%) in the roots. More Cu was immobilized in the root cell wall, thereby significantly enhancing root cell viability, maintaining the root morphology, and reducing malondialdehyde accumulation. Transcriptomics analyses revealed that Ag+-priming activated the phytohormone signal transduction and mitogen-activated protein kinase (MAPK) signaling pathway and other kinase signaling pathways in rice roots under Cu stress. These signals triggered the upregulation of defense-related gene expression, including the Cu vesicle transporter gene, oxidoreductase activity genes, and hydrogen peroxide catabolic process genes, amino acid metabolism, purine metabolism, and starch and sucrose metabolism. This study suggests that seed Ag+-priming is a simple and effective way to alleviate Cu toxicity and decrease Cu accumulation in rice, which ensures safe rice production in a sustainable way.