Giuseppe Andrea Fontanelli, Alessandro Sofia, Salvatore Fusco, Stanislao Grazioso, Giuseppe Di Gironimo
{"title":"在远程操作任务中对机器人设备进行人环控制的初步结构设计:NEFERTARI 项目案例研究","authors":"Giuseppe Andrea Fontanelli, Alessandro Sofia, Salvatore Fusco, Stanislao Grazioso, Giuseppe Di Gironimo","doi":"10.1016/j.fusengdes.2024.114586","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we present a general control architecture for robotic systems dedicated to the remote handling of in-vessel components in fusion machines. This control architecture will be tested for the inspection and maintenance of the first wall components of the RFX-mod2 experiment, in the scope of the New Equipment For the Experimental Research and Technological Advancement for the Rfx Infrastructure (NEFERTARI) project. The architecture is split into low-level and high-level layers. The former is used for the low-level control of the robotics systems and to manage safety; the latter is used for the high-level planning and implements several sub-modules, such as a Virtual Reality (VR) environment for the visualisation of the robot’s digital twin. Moreover, an Application Programming Interface (API) is intended to connect the two layers, and the communication between modules and layers is provided by the ROS2 framework. A typical usage of such a framework involves a human operator who is teleoperating the real robot, data from motor encoders are used as inputs for the dynamic model module. This module is used to compute the forward dynamics in real-time, providing an accurate simulation of the robot (digital twin) in the virtual environment.</p></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0920379624004381/pdfft?md5=f507671e81db88319fd53e58125cf0fe&pid=1-s2.0-S0920379624004381-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Preliminary architecture design for human-in-the-loop control of robotic equipment in remote handling tasks: Case study on the NEFERTARI project\",\"authors\":\"Giuseppe Andrea Fontanelli, Alessandro Sofia, Salvatore Fusco, Stanislao Grazioso, Giuseppe Di Gironimo\",\"doi\":\"10.1016/j.fusengdes.2024.114586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we present a general control architecture for robotic systems dedicated to the remote handling of in-vessel components in fusion machines. This control architecture will be tested for the inspection and maintenance of the first wall components of the RFX-mod2 experiment, in the scope of the New Equipment For the Experimental Research and Technological Advancement for the Rfx Infrastructure (NEFERTARI) project. The architecture is split into low-level and high-level layers. The former is used for the low-level control of the robotics systems and to manage safety; the latter is used for the high-level planning and implements several sub-modules, such as a Virtual Reality (VR) environment for the visualisation of the robot’s digital twin. Moreover, an Application Programming Interface (API) is intended to connect the two layers, and the communication between modules and layers is provided by the ROS2 framework. A typical usage of such a framework involves a human operator who is teleoperating the real robot, data from motor encoders are used as inputs for the dynamic model module. This module is used to compute the forward dynamics in real-time, providing an accurate simulation of the robot (digital twin) in the virtual environment.</p></div>\",\"PeriodicalId\":55133,\"journal\":{\"name\":\"Fusion Engineering and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0920379624004381/pdfft?md5=f507671e81db88319fd53e58125cf0fe&pid=1-s2.0-S0920379624004381-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920379624004381\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624004381","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Preliminary architecture design for human-in-the-loop control of robotic equipment in remote handling tasks: Case study on the NEFERTARI project
In this work, we present a general control architecture for robotic systems dedicated to the remote handling of in-vessel components in fusion machines. This control architecture will be tested for the inspection and maintenance of the first wall components of the RFX-mod2 experiment, in the scope of the New Equipment For the Experimental Research and Technological Advancement for the Rfx Infrastructure (NEFERTARI) project. The architecture is split into low-level and high-level layers. The former is used for the low-level control of the robotics systems and to manage safety; the latter is used for the high-level planning and implements several sub-modules, such as a Virtual Reality (VR) environment for the visualisation of the robot’s digital twin. Moreover, an Application Programming Interface (API) is intended to connect the two layers, and the communication between modules and layers is provided by the ROS2 framework. A typical usage of such a framework involves a human operator who is teleoperating the real robot, data from motor encoders are used as inputs for the dynamic model module. This module is used to compute the forward dynamics in real-time, providing an accurate simulation of the robot (digital twin) in the virtual environment.
期刊介绍:
The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.