利用广度和深度神经网络检测智能合约漏洞

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Science of Computer Programming Pub Date : 2024-07-10 DOI:10.1016/j.scico.2024.103172
Samuel Banning Osei , Zhongchen Ma , Rubing Huang
{"title":"利用广度和深度神经网络检测智能合约漏洞","authors":"Samuel Banning Osei ,&nbsp;Zhongchen Ma ,&nbsp;Rubing Huang","doi":"10.1016/j.scico.2024.103172","DOIUrl":null,"url":null,"abstract":"<div><p>Smart contracts, integral to blockchain technology, automate agreements without intermediaries, ensuring transparency and security across various sectors. However, the immutable nature of blockchain exposes deployed contracts to potential risks if they contain vulnerabilities. Current approaches, including symbolic execution and graph-based machine learning, aim to ensure smart contract security. However, these methods suffer from limitations such as high false positive rates, heavy reliance on trained data, and over-generalization.</p><p>The goal of this paper is to investigate the application of Wide and Deep Neural Networks in identifying vulnerabilities within smart contracts. We introduce WIDENNET, a method based on deep neural networks, designed to detect reentrancy and timestamp dependence vulnerabilities in smart contracts. Our approach involves extracting bytecodes from the contracts and converting them into Operational Codes (OPCODES), which are then transformed into distinct vector representations. These vectors are subsequently fed into the neural network to extract both complex and simple patterns for vulnerability detection. Testing on real-world datasets yielded an average accuracy of 83.07% and a precision of 83.13%. Our method offers a potential solution to mitigate vulnerabilities in blockchain applications.</p></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"238 ","pages":"Article 103172"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart contract vulnerability detection using wide and deep neural network\",\"authors\":\"Samuel Banning Osei ,&nbsp;Zhongchen Ma ,&nbsp;Rubing Huang\",\"doi\":\"10.1016/j.scico.2024.103172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Smart contracts, integral to blockchain technology, automate agreements without intermediaries, ensuring transparency and security across various sectors. However, the immutable nature of blockchain exposes deployed contracts to potential risks if they contain vulnerabilities. Current approaches, including symbolic execution and graph-based machine learning, aim to ensure smart contract security. However, these methods suffer from limitations such as high false positive rates, heavy reliance on trained data, and over-generalization.</p><p>The goal of this paper is to investigate the application of Wide and Deep Neural Networks in identifying vulnerabilities within smart contracts. We introduce WIDENNET, a method based on deep neural networks, designed to detect reentrancy and timestamp dependence vulnerabilities in smart contracts. Our approach involves extracting bytecodes from the contracts and converting them into Operational Codes (OPCODES), which are then transformed into distinct vector representations. These vectors are subsequently fed into the neural network to extract both complex and simple patterns for vulnerability detection. Testing on real-world datasets yielded an average accuracy of 83.07% and a precision of 83.13%. Our method offers a potential solution to mitigate vulnerabilities in blockchain applications.</p></div>\",\"PeriodicalId\":49561,\"journal\":{\"name\":\"Science of Computer Programming\",\"volume\":\"238 \",\"pages\":\"Article 103172\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Computer Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167642324000959\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642324000959","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

智能合约是区块链技术不可或缺的一部分,它可以在没有中间人的情况下自动达成协议,确保各行各业的透明度和安全性。然而,区块链不可更改的特性使已部署的合约在包含漏洞时面临潜在风险。当前的方法,包括符号执行和基于图的机器学习,旨在确保智能合约的安全性。然而,这些方法存在误报率高、严重依赖训练数据和过度泛化等局限性。本文旨在研究宽深度神经网络在识别智能合约漏洞方面的应用。我们介绍了基于深度神经网络的 WIDENNET 方法,该方法旨在检测智能合约中的重入性和时间戳依赖性漏洞。我们的方法包括从合约中提取字节码并将其转换为操作码(OPCODES),然后将其转换为不同的向量表示。这些向量随后被输入神经网络,以提取复杂和简单的模式进行漏洞检测。在真实世界数据集上的测试结果显示,平均准确率为 83.07%,精确率为 83.13%。我们的方法为减少区块链应用中的漏洞提供了一种潜在的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart contract vulnerability detection using wide and deep neural network

Smart contracts, integral to blockchain technology, automate agreements without intermediaries, ensuring transparency and security across various sectors. However, the immutable nature of blockchain exposes deployed contracts to potential risks if they contain vulnerabilities. Current approaches, including symbolic execution and graph-based machine learning, aim to ensure smart contract security. However, these methods suffer from limitations such as high false positive rates, heavy reliance on trained data, and over-generalization.

The goal of this paper is to investigate the application of Wide and Deep Neural Networks in identifying vulnerabilities within smart contracts. We introduce WIDENNET, a method based on deep neural networks, designed to detect reentrancy and timestamp dependence vulnerabilities in smart contracts. Our approach involves extracting bytecodes from the contracts and converting them into Operational Codes (OPCODES), which are then transformed into distinct vector representations. These vectors are subsequently fed into the neural network to extract both complex and simple patterns for vulnerability detection. Testing on real-world datasets yielded an average accuracy of 83.07% and a precision of 83.13%. Our method offers a potential solution to mitigate vulnerabilities in blockchain applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Computer Programming
Science of Computer Programming 工程技术-计算机:软件工程
CiteScore
3.80
自引率
0.00%
发文量
76
审稿时长
67 days
期刊介绍: Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design. The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice. The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including • Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software; • Design, implementation and evaluation of programming languages; • Programming environments, development tools, visualisation and animation; • Management of the development process; • Human factors in software, software for social interaction, software for social computing; • Cyber physical systems, and software for the interaction between the physical and the machine; • Software aspects of infrastructure services, system administration, and network management.
期刊最新文献
Editorial Board Assessing the coverage of W-based conformance testing methods over code faults Analysis and formal specification of OpenJDK's BitSet: Proof files Parametric ontologies in formal software engineering CAN-Verify: Automated analysis for BDI agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1