{"title":"通过图论对大规模动力系统进行基于优化的不相交和重叠ε分解","authors":"Sahar Maleki, Hassan Zarabadipour, Mehdi Rahmani","doi":"10.1016/j.jpdc.2024.104953","DOIUrl":null,"url":null,"abstract":"<div><p>To address the complexity challenge of a large-scale system, the decomposition into smaller subsystems is very crucial and demanding for distributed estimation and control purposes. This paper proposes novel optimization-based approaches to decompose a large-scale system into subsystems that are either weakly coupled or weakly coupled with overlapping components. To achieve this goal, first, the epsilon decomposition of large-scale systems is examined. Then, optimization frameworks are presented for disjoint and overlapping decompositions utilizing bipartite graphs. Next, the proposed decomposition algorithms are represented for particular cases of large-scale systems using directed graphs. In contrast to the existing user-based techniques, the proposed optimization-based methods can reach the solution rapidly and systematically. At last, the capability and efficiency of the proposed algorithms are investigated by conducting simulations on three case studies, which include a practical distillation column, a modified benchmark model, and the IEEE 118-bus power system.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"193 ","pages":"Article 104953"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization-based disjoint and overlapping epsilon decompositions of large-scale dynamical systems via graph theory\",\"authors\":\"Sahar Maleki, Hassan Zarabadipour, Mehdi Rahmani\",\"doi\":\"10.1016/j.jpdc.2024.104953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To address the complexity challenge of a large-scale system, the decomposition into smaller subsystems is very crucial and demanding for distributed estimation and control purposes. This paper proposes novel optimization-based approaches to decompose a large-scale system into subsystems that are either weakly coupled or weakly coupled with overlapping components. To achieve this goal, first, the epsilon decomposition of large-scale systems is examined. Then, optimization frameworks are presented for disjoint and overlapping decompositions utilizing bipartite graphs. Next, the proposed decomposition algorithms are represented for particular cases of large-scale systems using directed graphs. In contrast to the existing user-based techniques, the proposed optimization-based methods can reach the solution rapidly and systematically. At last, the capability and efficiency of the proposed algorithms are investigated by conducting simulations on three case studies, which include a practical distillation column, a modified benchmark model, and the IEEE 118-bus power system.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"193 \",\"pages\":\"Article 104953\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731524001175\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524001175","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Optimization-based disjoint and overlapping epsilon decompositions of large-scale dynamical systems via graph theory
To address the complexity challenge of a large-scale system, the decomposition into smaller subsystems is very crucial and demanding for distributed estimation and control purposes. This paper proposes novel optimization-based approaches to decompose a large-scale system into subsystems that are either weakly coupled or weakly coupled with overlapping components. To achieve this goal, first, the epsilon decomposition of large-scale systems is examined. Then, optimization frameworks are presented for disjoint and overlapping decompositions utilizing bipartite graphs. Next, the proposed decomposition algorithms are represented for particular cases of large-scale systems using directed graphs. In contrast to the existing user-based techniques, the proposed optimization-based methods can reach the solution rapidly and systematically. At last, the capability and efficiency of the proposed algorithms are investigated by conducting simulations on three case studies, which include a practical distillation column, a modified benchmark model, and the IEEE 118-bus power system.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.