Chunfang Kong , Mei Wu , Qilin Lu , Bo Ke , Jianhui Xie , Anna Li
{"title":"PI3K/AKT赋予慢性淋巴细胞白血病患者对吡咯替尼的内在耐药性和获得性耐药性","authors":"Chunfang Kong , Mei Wu , Qilin Lu , Bo Ke , Jianhui Xie , Anna Li","doi":"10.1016/j.leukres.2024.107548","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Pirtobrutinib, a non-covalent Bruton’s tyrosine kinase (BTK) inhibitor, has been approved as the first agent to overcome resistance to covalent BTK inhibitors (such as ibrutinib, acalabrutinib, and zanubrutinib). However, the mechanisms of pirtobrutinib resistance in chronic lymphocytic leukemia (CLL) remain poorly understood.</p></div><div><h3>Methods</h3><p>To investigate pirtobrutinib resistance, we established resistant cell models using BTK knock-out via CRISPR-Cas9 or chronic exposure to pirtobrutinib in MEC-1 cells. These models mimicked intrinsic or acquired resistance, respectively. We then analyzed differential protein expression between wild-type (WT) and resistant MEC-1 cells using Revers Phase Protein microArray (RPPA) and confirmed the findings through Western Blot. Additionally, we evaluated potential drugs to overcome pirtobrutinib resistance by conducting cell proliferation assays, apoptosis studies, and animal experiments using both sensitive and resistant cells.</p></div><div><h3>Results</h3><p>MEC-1 cells developed resistance to pirtobrutinib either through BTK knock-out or prolonged drug exposure over three months. RPPA analysis revealed significant activation of proteins related to the PI3K/AKT pathway, including AKT and S6, in the resistant cells. Western Blot confirmed increased phosphorylation of AKT and S6 in pirtobrutinib-resistant MEC-1 cells. Notably, both the PI3K inhibitor (CAL101) and the AKT inhibitor (MK2206) effectively reduced cell proliferation and induced apoptosis in the resistant cells. The anti-tumor efficacy of these drugs was mediated by inhibiting the PI3K/AKT pathway. In vivo animal studies further supported the potential of targeting PI3K/AKT to overcome both intrinsic and acquired resistance to pirtobrutinib.</p></div><div><h3>Conclusion</h3><p>The PI3K/AKT pathway plays a crucial role in both intrinsic and acquired resistance to pirtobrutinib in CLL. Therapeutically targeting this pathway may offer a promising strategy to overcome pirtobrutinib resistance.</p></div>","PeriodicalId":18051,"journal":{"name":"Leukemia research","volume":"144 ","pages":"Article 107548"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0145212624001140/pdfft?md5=0b6090d405f87272f93ede9712591792&pid=1-s2.0-S0145212624001140-main.pdf","citationCount":"0","resultStr":"{\"title\":\"PI3K/AKT confers intrinsic and acquired resistance to pirtobrutinib in chronic lymphocytic leukemia\",\"authors\":\"Chunfang Kong , Mei Wu , Qilin Lu , Bo Ke , Jianhui Xie , Anna Li\",\"doi\":\"10.1016/j.leukres.2024.107548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>Pirtobrutinib, a non-covalent Bruton’s tyrosine kinase (BTK) inhibitor, has been approved as the first agent to overcome resistance to covalent BTK inhibitors (such as ibrutinib, acalabrutinib, and zanubrutinib). However, the mechanisms of pirtobrutinib resistance in chronic lymphocytic leukemia (CLL) remain poorly understood.</p></div><div><h3>Methods</h3><p>To investigate pirtobrutinib resistance, we established resistant cell models using BTK knock-out via CRISPR-Cas9 or chronic exposure to pirtobrutinib in MEC-1 cells. These models mimicked intrinsic or acquired resistance, respectively. We then analyzed differential protein expression between wild-type (WT) and resistant MEC-1 cells using Revers Phase Protein microArray (RPPA) and confirmed the findings through Western Blot. Additionally, we evaluated potential drugs to overcome pirtobrutinib resistance by conducting cell proliferation assays, apoptosis studies, and animal experiments using both sensitive and resistant cells.</p></div><div><h3>Results</h3><p>MEC-1 cells developed resistance to pirtobrutinib either through BTK knock-out or prolonged drug exposure over three months. RPPA analysis revealed significant activation of proteins related to the PI3K/AKT pathway, including AKT and S6, in the resistant cells. Western Blot confirmed increased phosphorylation of AKT and S6 in pirtobrutinib-resistant MEC-1 cells. Notably, both the PI3K inhibitor (CAL101) and the AKT inhibitor (MK2206) effectively reduced cell proliferation and induced apoptosis in the resistant cells. The anti-tumor efficacy of these drugs was mediated by inhibiting the PI3K/AKT pathway. In vivo animal studies further supported the potential of targeting PI3K/AKT to overcome both intrinsic and acquired resistance to pirtobrutinib.</p></div><div><h3>Conclusion</h3><p>The PI3K/AKT pathway plays a crucial role in both intrinsic and acquired resistance to pirtobrutinib in CLL. Therapeutically targeting this pathway may offer a promising strategy to overcome pirtobrutinib resistance.</p></div>\",\"PeriodicalId\":18051,\"journal\":{\"name\":\"Leukemia research\",\"volume\":\"144 \",\"pages\":\"Article 107548\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0145212624001140/pdfft?md5=0b6090d405f87272f93ede9712591792&pid=1-s2.0-S0145212624001140-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leukemia research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0145212624001140\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0145212624001140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
PI3K/AKT confers intrinsic and acquired resistance to pirtobrutinib in chronic lymphocytic leukemia
Purpose
Pirtobrutinib, a non-covalent Bruton’s tyrosine kinase (BTK) inhibitor, has been approved as the first agent to overcome resistance to covalent BTK inhibitors (such as ibrutinib, acalabrutinib, and zanubrutinib). However, the mechanisms of pirtobrutinib resistance in chronic lymphocytic leukemia (CLL) remain poorly understood.
Methods
To investigate pirtobrutinib resistance, we established resistant cell models using BTK knock-out via CRISPR-Cas9 or chronic exposure to pirtobrutinib in MEC-1 cells. These models mimicked intrinsic or acquired resistance, respectively. We then analyzed differential protein expression between wild-type (WT) and resistant MEC-1 cells using Revers Phase Protein microArray (RPPA) and confirmed the findings through Western Blot. Additionally, we evaluated potential drugs to overcome pirtobrutinib resistance by conducting cell proliferation assays, apoptosis studies, and animal experiments using both sensitive and resistant cells.
Results
MEC-1 cells developed resistance to pirtobrutinib either through BTK knock-out or prolonged drug exposure over three months. RPPA analysis revealed significant activation of proteins related to the PI3K/AKT pathway, including AKT and S6, in the resistant cells. Western Blot confirmed increased phosphorylation of AKT and S6 in pirtobrutinib-resistant MEC-1 cells. Notably, both the PI3K inhibitor (CAL101) and the AKT inhibitor (MK2206) effectively reduced cell proliferation and induced apoptosis in the resistant cells. The anti-tumor efficacy of these drugs was mediated by inhibiting the PI3K/AKT pathway. In vivo animal studies further supported the potential of targeting PI3K/AKT to overcome both intrinsic and acquired resistance to pirtobrutinib.
Conclusion
The PI3K/AKT pathway plays a crucial role in both intrinsic and acquired resistance to pirtobrutinib in CLL. Therapeutically targeting this pathway may offer a promising strategy to overcome pirtobrutinib resistance.
期刊介绍:
Leukemia Research an international journal which brings comprehensive and current information to all health care professionals involved in basic and applied clinical research in hematological malignancies. The editors encourage the submission of articles relevant to hematological malignancies. The Journal scope includes reporting studies of cellular and molecular biology, genetics, immunology, epidemiology, clinical evaluation, and therapy of these diseases.