{"title":"通过重叠分组学习控制隐私泄露传播","authors":"Shahrzad Kiani;Franziska Boenisch;Stark C. Draper","doi":"10.1109/JSAIT.2024.3416089","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) is the standard protocol for collaborative learning. In FL, multiple workers jointly train a shared model. They exchange model updates calculated on their data, while keeping the raw data itself local. Since workers naturally form groups based on common interests and privacy policies, we are motivated to extend standard FL to reflect a setting with multiple, potentially overlapping groups. In this setup where workers can belong and contribute to more than one group at a time, complexities arise in understanding privacy leakage and in adhering to privacy policies. To address the challenges, we propose differential private overlapping grouped learning (DP-OGL), a novel method to implement privacy guarantees within overlapping groups. Under the honest-but-curious threat model, we derive novel privacy guarantees between arbitrary pairs of workers. These privacy guarantees describe and quantify two key effects of privacy leakage in DP-OGL: propagation delay, i.e., the fact that information from one group will leak to other groups only with temporal offset through the common workers and information degradation, i.e., the fact that noise addition over model updates limits information leakage between workers. Our experiments show that applying DP-OGL enhances utility while maintaining strong privacy compared to standard FL setups.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"442-463"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled Privacy Leakage Propagation Throughout Overlapping Grouped Learning\",\"authors\":\"Shahrzad Kiani;Franziska Boenisch;Stark C. Draper\",\"doi\":\"10.1109/JSAIT.2024.3416089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated Learning (FL) is the standard protocol for collaborative learning. In FL, multiple workers jointly train a shared model. They exchange model updates calculated on their data, while keeping the raw data itself local. Since workers naturally form groups based on common interests and privacy policies, we are motivated to extend standard FL to reflect a setting with multiple, potentially overlapping groups. In this setup where workers can belong and contribute to more than one group at a time, complexities arise in understanding privacy leakage and in adhering to privacy policies. To address the challenges, we propose differential private overlapping grouped learning (DP-OGL), a novel method to implement privacy guarantees within overlapping groups. Under the honest-but-curious threat model, we derive novel privacy guarantees between arbitrary pairs of workers. These privacy guarantees describe and quantify two key effects of privacy leakage in DP-OGL: propagation delay, i.e., the fact that information from one group will leak to other groups only with temporal offset through the common workers and information degradation, i.e., the fact that noise addition over model updates limits information leakage between workers. Our experiments show that applying DP-OGL enhances utility while maintaining strong privacy compared to standard FL setups.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"5 \",\"pages\":\"442-463\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10559973/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10559973/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Controlled Privacy Leakage Propagation Throughout Overlapping Grouped Learning
Federated Learning (FL) is the standard protocol for collaborative learning. In FL, multiple workers jointly train a shared model. They exchange model updates calculated on their data, while keeping the raw data itself local. Since workers naturally form groups based on common interests and privacy policies, we are motivated to extend standard FL to reflect a setting with multiple, potentially overlapping groups. In this setup where workers can belong and contribute to more than one group at a time, complexities arise in understanding privacy leakage and in adhering to privacy policies. To address the challenges, we propose differential private overlapping grouped learning (DP-OGL), a novel method to implement privacy guarantees within overlapping groups. Under the honest-but-curious threat model, we derive novel privacy guarantees between arbitrary pairs of workers. These privacy guarantees describe and quantify two key effects of privacy leakage in DP-OGL: propagation delay, i.e., the fact that information from one group will leak to other groups only with temporal offset through the common workers and information degradation, i.e., the fact that noise addition over model updates limits information leakage between workers. Our experiments show that applying DP-OGL enhances utility while maintaining strong privacy compared to standard FL setups.