亚暴流楔的电离层段:结合铱星和地面磁强计

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2024-07-14 DOI:10.1029/2024JA032414
Simon James Walker, Karl Magnus Laundal, Jone Peter Reistad, Spencer Mark Hatch, Anders Ohma, Jesper Gjerloev
{"title":"亚暴流楔的电离层段:结合铱星和地面磁强计","authors":"Simon James Walker,&nbsp;Karl Magnus Laundal,&nbsp;Jone Peter Reistad,&nbsp;Spencer Mark Hatch,&nbsp;Anders Ohma,&nbsp;Jesper Gjerloev","doi":"10.1029/2024JA032414","DOIUrl":null,"url":null,"abstract":"<p>Utilizing magnetic field measurements made by the Iridium satellites and by ground magnetometers in North America we calculate the full ionospheric current system and investigate the substorm current wedge. The current estimates are independent of ionospheric conductance, and are based on estimates of the divergence-free (DF) ionospheric current from ground magnetometers and curl-free (CF) ionospheric currents from Iridium. The DF and CF currents are represented using spherical elementary current systems (SECS), derived using a new inversion scheme that ensures the current systems' spatial scales are consistent. We present 18 substorm events and find a typical substorm current wedge (SCW) in 12 events. Our investigation of these substorms shows that during substorm expansion, equivalent field-aligned currents (EFACs) derived with ground magnetometers are a poor proxy of the actual FAC. We also find that the intensification of the westward electrojet can occur without an intensification of the FACs. We present theoretical investigations that show that the observed deviation between FACs estimated with satellite measurements and ground-based EFACs are consistent with the presence of a strong local enhancement of the ionospheric conductance, similar to the substorm bulge. Such enhancements of the auroral conductance can also change the ionospheric closure of pre-existing FACs such that the ground magnetic field, and in particular the westward electrojet, changes significantly. These results demonstrate that attributing intensification of the westward electrojet to SCW current closure can yield false understanding of the ionospheric and magnetospheric state.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA032414","citationCount":"0","resultStr":"{\"title\":\"The Ionospheric Leg of the Substorm Current Wedge: Combining Iridium and Ground Magnetometers\",\"authors\":\"Simon James Walker,&nbsp;Karl Magnus Laundal,&nbsp;Jone Peter Reistad,&nbsp;Spencer Mark Hatch,&nbsp;Anders Ohma,&nbsp;Jesper Gjerloev\",\"doi\":\"10.1029/2024JA032414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Utilizing magnetic field measurements made by the Iridium satellites and by ground magnetometers in North America we calculate the full ionospheric current system and investigate the substorm current wedge. The current estimates are independent of ionospheric conductance, and are based on estimates of the divergence-free (DF) ionospheric current from ground magnetometers and curl-free (CF) ionospheric currents from Iridium. The DF and CF currents are represented using spherical elementary current systems (SECS), derived using a new inversion scheme that ensures the current systems' spatial scales are consistent. We present 18 substorm events and find a typical substorm current wedge (SCW) in 12 events. Our investigation of these substorms shows that during substorm expansion, equivalent field-aligned currents (EFACs) derived with ground magnetometers are a poor proxy of the actual FAC. We also find that the intensification of the westward electrojet can occur without an intensification of the FACs. We present theoretical investigations that show that the observed deviation between FACs estimated with satellite measurements and ground-based EFACs are consistent with the presence of a strong local enhancement of the ionospheric conductance, similar to the substorm bulge. Such enhancements of the auroral conductance can also change the ionospheric closure of pre-existing FACs such that the ground magnetic field, and in particular the westward electrojet, changes significantly. These results demonstrate that attributing intensification of the westward electrojet to SCW current closure can yield false understanding of the ionospheric and magnetospheric state.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA032414\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032414\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032414","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

利用铱卫星和北美地面磁强计的磁场测量结果,我们计算了整个电离层电流系统,并研究了亚暴电流楔。电流估计值与电离层电导无关,是基于地面磁强计的无发散(DF)电离层电流估计值和铱星的无卷曲(CF)电离层电流估计值。无发散电离层电流和无卷曲电离层电流使用球形基本电流系统(SECS)表示,该系统使用新的反演方案得出,确保电流系统的空间尺度一致。我们展示了 18 个亚风暴事件,并在 12 个事件中发现了典型的亚风暴海流楔(SCW)。我们对这些亚暴的调查表明,在亚暴扩展过程中,用地面磁强计得出的等效场对准电流(EFAC)不能很好地代表实际的场对准电流。我们还发现,西向电射流的增强可能不会导致等效场对准电流的增强。我们提出的理论研究表明,卫星测量估计的 FAC 与地面 EFAC 之间的观测偏差与电离层电导的强局部增强(类似于亚暴隆起)是一致的。极光电导的这种增强也会改变电离层对先前存在的 FAC 的闭合,从而使地面磁场,特别是西向电射流发生显著变化。这些结果表明,将西向电射流的增强归因于SCW电流闭合可能会导致对电离层和磁层状态的错误理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Ionospheric Leg of the Substorm Current Wedge: Combining Iridium and Ground Magnetometers

Utilizing magnetic field measurements made by the Iridium satellites and by ground magnetometers in North America we calculate the full ionospheric current system and investigate the substorm current wedge. The current estimates are independent of ionospheric conductance, and are based on estimates of the divergence-free (DF) ionospheric current from ground magnetometers and curl-free (CF) ionospheric currents from Iridium. The DF and CF currents are represented using spherical elementary current systems (SECS), derived using a new inversion scheme that ensures the current systems' spatial scales are consistent. We present 18 substorm events and find a typical substorm current wedge (SCW) in 12 events. Our investigation of these substorms shows that during substorm expansion, equivalent field-aligned currents (EFACs) derived with ground magnetometers are a poor proxy of the actual FAC. We also find that the intensification of the westward electrojet can occur without an intensification of the FACs. We present theoretical investigations that show that the observed deviation between FACs estimated with satellite measurements and ground-based EFACs are consistent with the presence of a strong local enhancement of the ionospheric conductance, similar to the substorm bulge. Such enhancements of the auroral conductance can also change the ionospheric closure of pre-existing FACs such that the ground magnetic field, and in particular the westward electrojet, changes significantly. These results demonstrate that attributing intensification of the westward electrojet to SCW current closure can yield false understanding of the ionospheric and magnetospheric state.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
Local Empirical Modeling of NmF2 Using Ionosonde Observations and the FISM2 Solar EUV Model A Statistical Survey of E-Region Anomalous Electron Heating Using Poker Flat Incoherent Scatter Radar Observations Evidence of Plasma Mixing at the Earth's Magnetopause Due To Kelvin Helmholtz Vortices Nonlinear Wave-Particle Interaction Effects on Radiation Belt Electron Dynamics in 9 October 2012 Storm First Observation of Temporal Variation of STEVE Altitudes Using Triangulation by Two Color Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1