清道夫受体 B 类 I 型调节癫痫发作和受体 α2δ-1 的表达

IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Neurochemical Research Pub Date : 2024-10-01 Epub Date: 2024-07-17 DOI:10.1007/s11064-024-04209-6
Yunyi Huang, Yuan Gao, Zhongwen Huang, Minxue Liang, Yangmei Chen
{"title":"清道夫受体 B 类 I 型调节癫痫发作和受体 α2δ-1 的表达","authors":"Yunyi Huang, Yuan Gao, Zhongwen Huang, Minxue Liang, Yangmei Chen","doi":"10.1007/s11064-024-04209-6","DOIUrl":null,"url":null,"abstract":"<p><p>Scavenger receptor class B type I (SR-BI) is abundant in adult mouse and human brains, but its function in the central nervous system (CNS) remains unclear. This study explored the role of SR-BI in epilepsy and its possible underlying mechanism. Expression patterns of SR-BI in the brains of mice with kainic acid (KA)-induced epilepsy were detected using immunofluorescence staining, quantitative real-time polymerase chain reaction (qPCR), and Western blotting(WB). Behavioral analysis was performed by 24-hour video monitoring and hippocampal local field potential (LFP) recordings were employed to verify the role of SR-BI in epileptogenesis. RNA sequencing (RNA-seq) was used to obtain biological information on SR-BI in the CNS. WB, qPCR, and co-immunoprecipitation (Co-IP) were performed to identify the relationship between SR-BI and the gabapentin receptor α2δ-1.The results showed that SR-BI was primarily co-localized with astrocytes and its expression was down-regulated in the hippocampus of KA mice. Notably, overexpressing SR-BI alleviated the epileptic behavioral phenotype in KA mice. Hippocampal transcriptomic analysis revealed 1043 differentially expressed genes (DEGs) in the SR-BI-overexpressing group. Most DEGs confirmed by RNA-seq analysis were associated with synapses, neuronal projections, neuron development, and ion binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the DEGs were enriched in the glutamatergic synapse pathway. Furthermore, the gabapentin receptor α2δ-1 decreased with SR-BI overexpression in epileptic mice. Overall, these findings highlight the important role of SR-BI in regulating epileptogenesis and that the gabapentin receptor α2δ-1 is a potential downstream target of SR-BI.</p>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scavenger Receptor Class B Type I Modulates Epileptic Seizures and Receptor α2δ-1 Expression.\",\"authors\":\"Yunyi Huang, Yuan Gao, Zhongwen Huang, Minxue Liang, Yangmei Chen\",\"doi\":\"10.1007/s11064-024-04209-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scavenger receptor class B type I (SR-BI) is abundant in adult mouse and human brains, but its function in the central nervous system (CNS) remains unclear. This study explored the role of SR-BI in epilepsy and its possible underlying mechanism. Expression patterns of SR-BI in the brains of mice with kainic acid (KA)-induced epilepsy were detected using immunofluorescence staining, quantitative real-time polymerase chain reaction (qPCR), and Western blotting(WB). Behavioral analysis was performed by 24-hour video monitoring and hippocampal local field potential (LFP) recordings were employed to verify the role of SR-BI in epileptogenesis. RNA sequencing (RNA-seq) was used to obtain biological information on SR-BI in the CNS. WB, qPCR, and co-immunoprecipitation (Co-IP) were performed to identify the relationship between SR-BI and the gabapentin receptor α2δ-1.The results showed that SR-BI was primarily co-localized with astrocytes and its expression was down-regulated in the hippocampus of KA mice. Notably, overexpressing SR-BI alleviated the epileptic behavioral phenotype in KA mice. Hippocampal transcriptomic analysis revealed 1043 differentially expressed genes (DEGs) in the SR-BI-overexpressing group. Most DEGs confirmed by RNA-seq analysis were associated with synapses, neuronal projections, neuron development, and ion binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the DEGs were enriched in the glutamatergic synapse pathway. Furthermore, the gabapentin receptor α2δ-1 decreased with SR-BI overexpression in epileptic mice. Overall, these findings highlight the important role of SR-BI in regulating epileptogenesis and that the gabapentin receptor α2δ-1 is a potential downstream target of SR-BI.</p>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11064-024-04209-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11064-024-04209-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

清道夫受体 B 类 I 型(SR-BI)在成年小鼠和人类大脑中含量丰富,但其在中枢神经系统(CNS)中的功能仍不清楚。本研究探讨了SR-BI在癫痫中的作用及其可能的内在机制。研究采用免疫荧光染色、实时定量聚合酶链反应(qPCR)和免疫印迹(WB)技术检测了SR-BI在凯尼酸(KA)诱导的癫痫小鼠大脑中的表达模式。通过24小时视频监测和海马局域电位(LFP)记录进行行为分析,以验证SR-BI在癫痫发生中的作用。RNA测序(RNA-seq)用于获取中枢神经系统中SR-BI的生物学信息。结果显示,SR-BI主要与星形胶质细胞共定位,其在KA小鼠海马中的表达下调。值得注意的是,过表达SR-BI可减轻KA小鼠的癫痫行为表型。海马转录组分析显示,SR-BI过表达组有1043个差异表达基因(DEGs)。通过RNA-seq分析确认的大多数DEGs与突触、神经元投射、神经元发育和离子结合有关。京都基因组百科全书(KEGG)分析表明,DEGs富集于谷氨酸能突触通路。此外,在癫痫小鼠中,加巴喷丁受体α2δ-1随着SR-BI的过表达而减少。总之,这些发现强调了SR-BI在调节癫痫发生中的重要作用,以及加巴喷丁受体α2δ-1是SR-BI的潜在下游靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scavenger Receptor Class B Type I Modulates Epileptic Seizures and Receptor α2δ-1 Expression.

Scavenger receptor class B type I (SR-BI) is abundant in adult mouse and human brains, but its function in the central nervous system (CNS) remains unclear. This study explored the role of SR-BI in epilepsy and its possible underlying mechanism. Expression patterns of SR-BI in the brains of mice with kainic acid (KA)-induced epilepsy were detected using immunofluorescence staining, quantitative real-time polymerase chain reaction (qPCR), and Western blotting(WB). Behavioral analysis was performed by 24-hour video monitoring and hippocampal local field potential (LFP) recordings were employed to verify the role of SR-BI in epileptogenesis. RNA sequencing (RNA-seq) was used to obtain biological information on SR-BI in the CNS. WB, qPCR, and co-immunoprecipitation (Co-IP) were performed to identify the relationship between SR-BI and the gabapentin receptor α2δ-1.The results showed that SR-BI was primarily co-localized with astrocytes and its expression was down-regulated in the hippocampus of KA mice. Notably, overexpressing SR-BI alleviated the epileptic behavioral phenotype in KA mice. Hippocampal transcriptomic analysis revealed 1043 differentially expressed genes (DEGs) in the SR-BI-overexpressing group. Most DEGs confirmed by RNA-seq analysis were associated with synapses, neuronal projections, neuron development, and ion binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the DEGs were enriched in the glutamatergic synapse pathway. Furthermore, the gabapentin receptor α2δ-1 decreased with SR-BI overexpression in epileptic mice. Overall, these findings highlight the important role of SR-BI in regulating epileptogenesis and that the gabapentin receptor α2δ-1 is a potential downstream target of SR-BI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurochemical Research
Neurochemical Research 医学-神经科学
CiteScore
7.70
自引率
2.30%
发文量
320
审稿时长
6 months
期刊介绍: Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.
期刊最新文献
Correction: HDAC1 Promotes Mitochondrial Pathway Apoptosis and Inhibits the Endoplasmic Reticulum Stress Response in High Glucose-Treated Schwann Cells via Decreased U4 Spliceosomal RNA. The Role of Ferroptosis in Amyotrophic Lateral Sclerosis Treatment. HDAC1 Promotes Mitochondrial Pathway Apoptosis and Inhibits the Endoplasmic Reticulum Stress Response in High Glucose-Treated Schwann Cells via Decreased U4 Spliceosomal RNA. Therapeutic Potential of Fingolimod on Psychological Symptoms and Cognitive Function in Neuropsychiatric and Neurological Disorders. Ketogenic Diets Alter the Gut Microbiome, Resulting in Decreased Susceptibility to and Cognitive Impairment in Rats with Pilocarpine-Induced Status Epilepticus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1