代谢性疾病和极端环境中的 miRNA 和瘦素信号转导。

IF 2.9 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pharmacology Research & Perspectives Pub Date : 2024-08-01 DOI:10.1002/prp2.1248
Samrita Mondal, Richa Rathor, Som Nath Singh, Geetha Suryakumar
{"title":"代谢性疾病和极端环境中的 miRNA 和瘦素信号转导。","authors":"Samrita Mondal, Richa Rathor, Som Nath Singh, Geetha Suryakumar","doi":"10.1002/prp2.1248","DOIUrl":null,"url":null,"abstract":"<p><p>The burden of growing concern about the dysregulation of metabolic processes arises due to complex interplay between environment and nutrition that has great impact on genetics and epigenetics of an individual. Thereby, any abnormality at the level of food intake regulating hormones may contribute to the development of metabolic diseases in any age group due to malnutrition, overweight, changing lifestyle, and exposure to extreme environments such as heat stress (HS), cold stress, or high altitude (HA). Hormones such as leptin, adiponectin, ghrelin, and cholecystokinin regulate appetite and satiety to maintain energy homeostasis. Leptin, an adipokine and a pleiotropic hormone, play major role in regulating the food intake, energy gain and energy expenditure. Using in silico approach, we have identified the major genes (LEP, LEPR, JAK2, STAT3, NPY, POMC, IRS1, SOCS3) that play crucial role in leptin signaling pathway. Further, eight miRNAs (hsa-miR-204-5p, hsa-miR-211-5p, hsa-miR-30, hsa-miR-3163, hsa-miR-33a-3p, hsa-miR-548, hsa-miR-561-3p, hsa-miR-7856-5p) from TargetScan 8.0 database were screened out that commonly target these genes. The role of these miRNAs should be explored as they might play vital role in regulating the appetite, energy metabolism, metabolic diseases (obesity, type 2 diabetes, cardiovascular diseases, inflammation), and to combat extreme environments. The miRNAs regulating leptin signaling and appetite may be useful for developing novel therapeutics for metabolic diseases.</p>","PeriodicalId":19948,"journal":{"name":"Pharmacology Research & Perspectives","volume":"12 4","pages":"e1248"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253706/pdf/","citationCount":"0","resultStr":"{\"title\":\"miRNA and leptin signaling in metabolic diseases and at extreme environments.\",\"authors\":\"Samrita Mondal, Richa Rathor, Som Nath Singh, Geetha Suryakumar\",\"doi\":\"10.1002/prp2.1248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The burden of growing concern about the dysregulation of metabolic processes arises due to complex interplay between environment and nutrition that has great impact on genetics and epigenetics of an individual. Thereby, any abnormality at the level of food intake regulating hormones may contribute to the development of metabolic diseases in any age group due to malnutrition, overweight, changing lifestyle, and exposure to extreme environments such as heat stress (HS), cold stress, or high altitude (HA). Hormones such as leptin, adiponectin, ghrelin, and cholecystokinin regulate appetite and satiety to maintain energy homeostasis. Leptin, an adipokine and a pleiotropic hormone, play major role in regulating the food intake, energy gain and energy expenditure. Using in silico approach, we have identified the major genes (LEP, LEPR, JAK2, STAT3, NPY, POMC, IRS1, SOCS3) that play crucial role in leptin signaling pathway. Further, eight miRNAs (hsa-miR-204-5p, hsa-miR-211-5p, hsa-miR-30, hsa-miR-3163, hsa-miR-33a-3p, hsa-miR-548, hsa-miR-561-3p, hsa-miR-7856-5p) from TargetScan 8.0 database were screened out that commonly target these genes. The role of these miRNAs should be explored as they might play vital role in regulating the appetite, energy metabolism, metabolic diseases (obesity, type 2 diabetes, cardiovascular diseases, inflammation), and to combat extreme environments. The miRNAs regulating leptin signaling and appetite may be useful for developing novel therapeutics for metabolic diseases.</p>\",\"PeriodicalId\":19948,\"journal\":{\"name\":\"Pharmacology Research & Perspectives\",\"volume\":\"12 4\",\"pages\":\"e1248\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacology Research & Perspectives\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/prp2.1248\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Research & Perspectives","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/prp2.1248","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

由于环境和营养之间复杂的相互作用对个体的遗传学和表观遗传学具有重大影响,人们对代谢过程失调的关注与日俱增。因此,由于营养不良、超重、生活方式改变以及暴露于热应激(HS)、冷应激或高海拔(HA)等极端环境,食物摄入调节激素水平的任何异常都可能导致任何年龄组的代谢性疾病的发生。瘦素、脂肪连通素、胃泌素和胆囊收缩素等激素可调节食欲和饱腹感,从而维持能量平衡。瘦素是一种脂肪因子,也是一种多效激素,在调节食物摄入、能量增加和能量消耗方面发挥着重要作用。我们利用硅学方法确定了在瘦素信号通路中发挥关键作用的主要基因(LEP、LEPR、JAK2、STAT3、NPY、POMC、IRS1、SOCS3)。此外,研究人员还从 TargetScan 8.0 数据库中筛选出了 8 个通常靶向这些基因的 miRNA(hsa-miR-204-5p、hsa-miR-211-5p、hsa-miR-30、hsa-miR-3163、hsa-miR-33a-3p、hsa-miR-548、hsa-miR-561-3p、hsa-miR-7856-5p)。这些 miRNA 在调节食欲、能量代谢、代谢性疾病(肥胖、2 型糖尿病、心血管疾病、炎症)以及对抗极端环境方面可能发挥着重要作用,因此应该对它们的作用进行研究。调节瘦素信号转导和食欲的 miRNA 可能有助于开发治疗代谢性疾病的新型疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miRNA and leptin signaling in metabolic diseases and at extreme environments.

The burden of growing concern about the dysregulation of metabolic processes arises due to complex interplay between environment and nutrition that has great impact on genetics and epigenetics of an individual. Thereby, any abnormality at the level of food intake regulating hormones may contribute to the development of metabolic diseases in any age group due to malnutrition, overweight, changing lifestyle, and exposure to extreme environments such as heat stress (HS), cold stress, or high altitude (HA). Hormones such as leptin, adiponectin, ghrelin, and cholecystokinin regulate appetite and satiety to maintain energy homeostasis. Leptin, an adipokine and a pleiotropic hormone, play major role in regulating the food intake, energy gain and energy expenditure. Using in silico approach, we have identified the major genes (LEP, LEPR, JAK2, STAT3, NPY, POMC, IRS1, SOCS3) that play crucial role in leptin signaling pathway. Further, eight miRNAs (hsa-miR-204-5p, hsa-miR-211-5p, hsa-miR-30, hsa-miR-3163, hsa-miR-33a-3p, hsa-miR-548, hsa-miR-561-3p, hsa-miR-7856-5p) from TargetScan 8.0 database were screened out that commonly target these genes. The role of these miRNAs should be explored as they might play vital role in regulating the appetite, energy metabolism, metabolic diseases (obesity, type 2 diabetes, cardiovascular diseases, inflammation), and to combat extreme environments. The miRNAs regulating leptin signaling and appetite may be useful for developing novel therapeutics for metabolic diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmacology Research & Perspectives
Pharmacology Research & Perspectives Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
5.30
自引率
3.80%
发文量
120
审稿时长
20 weeks
期刊介绍: PR&P is jointly published by the American Society for Pharmacology and Experimental Therapeutics (ASPET), the British Pharmacological Society (BPS), and Wiley. PR&P is a bi-monthly open access journal that publishes a range of article types, including: target validation (preclinical papers that show a hypothesis is incorrect or papers on drugs that have failed in early clinical development); drug discovery reviews (strategy, hypotheses, and data resulting in a successful therapeutic drug); frontiers in translational medicine (drug and target validation for an unmet therapeutic need); pharmacological hypotheses (reviews that are oriented to inform a novel hypothesis); and replication studies (work that refutes key findings [failed replication] and work that validates key findings). PR&P publishes papers submitted directly to the journal and those referred from the journals of ASPET and the BPS
期刊最新文献
Higher dose antiviral therapy for herpes infections is associated with a risk of serious adverse events in older adults with chronic kidney disease. Obicetrapib exhibits favorable physiochemical and pharmacokinetic properties compared to previous cholesteryl ester transfer protein inhibitors: An integrated summary of results from non-human primate studies and clinical trials. Therapeutic potential of agents targeting cannabinoid type 2 receptors in organ fibrosis. The hydroxycarboxylic acid receptor HCA2 is required for the protective effect of ketogenic diet in epilepsy. The preclinical pharmacokinetics of Tolinapant-A dual cIAP1/XIAP antagonist with in vivo efficacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1