60Co 伽马射线对水热合成的 MoO3-CeO2 纳米复合材料的结构、形态和光学性能的影响。

IF 0.8 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Radiation protection dosimetry Pub Date : 2024-07-17 DOI:10.1093/rpd/ncad329
Asha P Shirni, Madhura N Talwar, Sweekar B R, Gnana Prakash Akkanagouda Patil
{"title":"60Co 伽马射线对水热合成的 MoO3-CeO2 纳米复合材料的结构、形态和光学性能的影响。","authors":"Asha P Shirni, Madhura N Talwar, Sweekar B R, Gnana Prakash Akkanagouda Patil","doi":"10.1093/rpd/ncad329","DOIUrl":null,"url":null,"abstract":"<p><p>The influence of 60Co gamma radiation on Molybdenum Oxide-Cerium Oxide (MoO3-CeO2) nanocomposite is investigated in the present study. The MoO3-CeO2 nanocomposite was synthesized by conventional hydrothermal route. Ammonium hepta molybdate tetrahydrate [(NH4)6Mo7O24.4H2O] and cerium nitrate [Ce (NO3)3.4H2O] were used as the precursors. The composite was subjected to high energy gamma irradiation for different doses of 50, 100 and 150 kGy using 60Co gamma irradiation chamber. The structural study was carried out using X-ray diffraction, the morphological studies were carried out using scanning electron microscopy and ultraviolet-visible spectroscopy was carried out to study the optical properties before and after irradiation. The crystallite size was found to increase with increasing doses of gamma irradiation. The morphology of the samples shows that the nanoparticles tend to agglomerate with increasing doses of gamma radiation. The energy bandgap of the MoO3-CeO2 nanocomposite was calculated before and after irradiation and found to decrease with increasing doses of irradiation upto 100 kGy and then increases for 150 kGy.</p>","PeriodicalId":20795,"journal":{"name":"Radiation protection dosimetry","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of 60Co gamma radiation on the structural, morphological and optical properties of hydrothermally synthesized MoO3-CeO2 nanocomposite.\",\"authors\":\"Asha P Shirni, Madhura N Talwar, Sweekar B R, Gnana Prakash Akkanagouda Patil\",\"doi\":\"10.1093/rpd/ncad329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The influence of 60Co gamma radiation on Molybdenum Oxide-Cerium Oxide (MoO3-CeO2) nanocomposite is investigated in the present study. The MoO3-CeO2 nanocomposite was synthesized by conventional hydrothermal route. Ammonium hepta molybdate tetrahydrate [(NH4)6Mo7O24.4H2O] and cerium nitrate [Ce (NO3)3.4H2O] were used as the precursors. The composite was subjected to high energy gamma irradiation for different doses of 50, 100 and 150 kGy using 60Co gamma irradiation chamber. The structural study was carried out using X-ray diffraction, the morphological studies were carried out using scanning electron microscopy and ultraviolet-visible spectroscopy was carried out to study the optical properties before and after irradiation. The crystallite size was found to increase with increasing doses of gamma irradiation. The morphology of the samples shows that the nanoparticles tend to agglomerate with increasing doses of gamma radiation. The energy bandgap of the MoO3-CeO2 nanocomposite was calculated before and after irradiation and found to decrease with increasing doses of irradiation upto 100 kGy and then increases for 150 kGy.</p>\",\"PeriodicalId\":20795,\"journal\":{\"name\":\"Radiation protection dosimetry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation protection dosimetry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/rpd/ncad329\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation protection dosimetry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/rpd/ncad329","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了 60Co 伽马射线对氧化钼-氧化铈(MoO3-CeO2)纳米复合材料的影响。MoO3-CeO2 纳米复合材料是通过传统的水热法合成的。前驱体采用四水七钼酸铵[(NH4)6Mo7O24.4H2O]和硝酸铈[Ce (NO3)3.4H2O]。使用 60Co 伽马辐照室对复合材料进行了 50、100 和 150 kGy 不同剂量的高能伽马辐照。使用 X 射线衍射进行了结构研究,使用扫描电子显微镜进行了形态研究,并使用紫外-可见光谱研究了辐照前后的光学特性。结果发现,随着伽马辐照剂量的增加,晶体尺寸也在增大。样品的形态显示,随着伽马辐射剂量的增加,纳米颗粒趋于团聚。计算了辐照前后 MoO3-CeO2 纳米复合材料的能带隙,发现随着辐照剂量的增加,能带隙在 100 kGy 以下会减小,在 150 kGy 以下会增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of 60Co gamma radiation on the structural, morphological and optical properties of hydrothermally synthesized MoO3-CeO2 nanocomposite.

The influence of 60Co gamma radiation on Molybdenum Oxide-Cerium Oxide (MoO3-CeO2) nanocomposite is investigated in the present study. The MoO3-CeO2 nanocomposite was synthesized by conventional hydrothermal route. Ammonium hepta molybdate tetrahydrate [(NH4)6Mo7O24.4H2O] and cerium nitrate [Ce (NO3)3.4H2O] were used as the precursors. The composite was subjected to high energy gamma irradiation for different doses of 50, 100 and 150 kGy using 60Co gamma irradiation chamber. The structural study was carried out using X-ray diffraction, the morphological studies were carried out using scanning electron microscopy and ultraviolet-visible spectroscopy was carried out to study the optical properties before and after irradiation. The crystallite size was found to increase with increasing doses of gamma irradiation. The morphology of the samples shows that the nanoparticles tend to agglomerate with increasing doses of gamma radiation. The energy bandgap of the MoO3-CeO2 nanocomposite was calculated before and after irradiation and found to decrease with increasing doses of irradiation upto 100 kGy and then increases for 150 kGy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation protection dosimetry
Radiation protection dosimetry 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
1.40
自引率
10.00%
发文量
223
审稿时长
6-12 weeks
期刊介绍: Radiation Protection Dosimetry covers all aspects of personal and environmental dosimetry and monitoring, for both ionising and non-ionising radiations. This includes biological aspects, physical concepts, biophysical dosimetry, external and internal personal dosimetry and monitoring, environmental and workplace monitoring, accident dosimetry, and dosimetry related to the protection of patients. Particular emphasis is placed on papers covering the fundamentals of dosimetry; units, radiation quantities and conversion factors. Papers covering archaeological dating are included only if the fundamental measurement method or technique, such as thermoluminescence, has direct application to personal dosimetry measurements. Papers covering the dosimetric aspects of radon or other naturally occurring radioactive materials and low level radiation are included. Animal experiments and ecological sample measurements are not included unless there is a significant relevant content reason.
期刊最新文献
Assessment of occupational radiation exposure during a specific endoscopic retrograde cholangiopancreatography procedure. Evaluating lead-free alternatives for radiation shielding in diagnostic radiology: a case study from a tertiary general hospital in Korea. An electronic energy compensation method for flattening the energy response of SiPM-GGAG:Ce,B based gamma detector. An approach to assess real workload of medical linear accelerators in Sri Lanka. Assessment of foetal dose and occupational exposure for pregnant workers in nuclear medicine using the Taiwanese pregnancy phantom.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1