地下水样本中铀浓度及其对印度卡纳塔克邦班加罗尔 Manchanabele 水库周边地区居民健康危害的研究。

IF 0.8 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Radiation protection dosimetry Pub Date : 2024-07-17 DOI:10.1093/rpd/ncae044
Donakuppe N Deepika, Madalakote R Ambika, Karunakara Naregundi, Sudeep Kumara, Kanishettyhalli Nagaraja V Kumar, Ningaiah Nagaiah
{"title":"地下水样本中铀浓度及其对印度卡纳塔克邦班加罗尔 Manchanabele 水库周边地区居民健康危害的研究。","authors":"Donakuppe N Deepika, Madalakote R Ambika, Karunakara Naregundi, Sudeep Kumara, Kanishettyhalli Nagaraja V Kumar, Ningaiah Nagaiah","doi":"10.1093/rpd/ncae044","DOIUrl":null,"url":null,"abstract":"<p><p>Uranium occurs naturally in groundwater and surface water. Being a radioactive element, high uranium concentration can cause impact on human health. The health effects associated with consumption of uranium through water includes increased cancer risk and kidney toxicity. In view of this, an attempt was made in the present study to establish the level of radiological and chemical toxicity of uranium. Radiological toxicity was evaluated in terms of lifetime cancer risk and chemical toxicity through hazard quotient. For the said purpose, groundwater samples from the selected villages of the surrounding region of the Manchanabele reservoir, southwest of Bengaluru, were collected. The collected groundwater samples were analysed for Uranium mass concentration using Light emitting diode (LED) fluorimeter and is found to range from 0.88 to 581.47 ppb with a GM of 20.82 ppb. The result reveals that ~ 66% of the samples show concentration of uranium within the safe limit of 30 ppb as set by the World Health Organisation. The radiological risk estimated in terms of lifetime cancer risk is in the range of 0.0028 × 10-3 to 1.85 × 10-3 with a GM of 0.066 × 10-3. The chemical toxicity risk measured as lifetime annual daily dose is found to range from 0.03 to 21.65 μg per kg per d with a GM of 0.77 μg per kg per d.</p>","PeriodicalId":20795,"journal":{"name":"Radiation protection dosimetry","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studies on uranium concentration in groundwater samples and its associated health hazards to the residents of surrounding regions of Manchanabele reservoir, Bengaluru, Karnataka, India.\",\"authors\":\"Donakuppe N Deepika, Madalakote R Ambika, Karunakara Naregundi, Sudeep Kumara, Kanishettyhalli Nagaraja V Kumar, Ningaiah Nagaiah\",\"doi\":\"10.1093/rpd/ncae044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Uranium occurs naturally in groundwater and surface water. Being a radioactive element, high uranium concentration can cause impact on human health. The health effects associated with consumption of uranium through water includes increased cancer risk and kidney toxicity. In view of this, an attempt was made in the present study to establish the level of radiological and chemical toxicity of uranium. Radiological toxicity was evaluated in terms of lifetime cancer risk and chemical toxicity through hazard quotient. For the said purpose, groundwater samples from the selected villages of the surrounding region of the Manchanabele reservoir, southwest of Bengaluru, were collected. The collected groundwater samples were analysed for Uranium mass concentration using Light emitting diode (LED) fluorimeter and is found to range from 0.88 to 581.47 ppb with a GM of 20.82 ppb. The result reveals that ~ 66% of the samples show concentration of uranium within the safe limit of 30 ppb as set by the World Health Organisation. The radiological risk estimated in terms of lifetime cancer risk is in the range of 0.0028 × 10-3 to 1.85 × 10-3 with a GM of 0.066 × 10-3. The chemical toxicity risk measured as lifetime annual daily dose is found to range from 0.03 to 21.65 μg per kg per d with a GM of 0.77 μg per kg per d.</p>\",\"PeriodicalId\":20795,\"journal\":{\"name\":\"Radiation protection dosimetry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation protection dosimetry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/rpd/ncae044\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation protection dosimetry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/rpd/ncae044","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

铀天然存在于地下水和地表水中。作为一种放射性元素,高浓度的铀会对人体健康造成影响。通过水摄入铀对健康的影响包括增加癌症风险和肾脏毒性。有鉴于此,本研究试图确定铀的放射性和化学毒性水平。放射性毒性以终生致癌风险来评估,化学毒性则通过危险商数来评估。为此,研究人员从班加罗尔西南部曼查纳贝莱水库周边地区的选定村庄采集了地下水样本。采集的地下水样本使用发光二极管 (LED) 荧光仪分析了铀的质量浓度,结果发现铀的浓度范围为 0.88 至 581.47 ppb,GM 值为 20.82 ppb。结果显示,约 66% 的样本中铀的浓度在世界卫生组织规定的 30 ppb 安全限值之内。按终生致癌风险估算的辐射风险在 0.0028 × 10-3 至 1.85 × 10-3 之间,GM 值为 0.066 × 10-3。以终生年日剂量计算的化学毒性风险范围为每公斤每天 0.03 至 21.65 微克,GM 值为每公斤每天 0.77 微克。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studies on uranium concentration in groundwater samples and its associated health hazards to the residents of surrounding regions of Manchanabele reservoir, Bengaluru, Karnataka, India.

Uranium occurs naturally in groundwater and surface water. Being a radioactive element, high uranium concentration can cause impact on human health. The health effects associated with consumption of uranium through water includes increased cancer risk and kidney toxicity. In view of this, an attempt was made in the present study to establish the level of radiological and chemical toxicity of uranium. Radiological toxicity was evaluated in terms of lifetime cancer risk and chemical toxicity through hazard quotient. For the said purpose, groundwater samples from the selected villages of the surrounding region of the Manchanabele reservoir, southwest of Bengaluru, were collected. The collected groundwater samples were analysed for Uranium mass concentration using Light emitting diode (LED) fluorimeter and is found to range from 0.88 to 581.47 ppb with a GM of 20.82 ppb. The result reveals that ~ 66% of the samples show concentration of uranium within the safe limit of 30 ppb as set by the World Health Organisation. The radiological risk estimated in terms of lifetime cancer risk is in the range of 0.0028 × 10-3 to 1.85 × 10-3 with a GM of 0.066 × 10-3. The chemical toxicity risk measured as lifetime annual daily dose is found to range from 0.03 to 21.65 μg per kg per d with a GM of 0.77 μg per kg per d.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation protection dosimetry
Radiation protection dosimetry 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
1.40
自引率
10.00%
发文量
223
审稿时长
6-12 weeks
期刊介绍: Radiation Protection Dosimetry covers all aspects of personal and environmental dosimetry and monitoring, for both ionising and non-ionising radiations. This includes biological aspects, physical concepts, biophysical dosimetry, external and internal personal dosimetry and monitoring, environmental and workplace monitoring, accident dosimetry, and dosimetry related to the protection of patients. Particular emphasis is placed on papers covering the fundamentals of dosimetry; units, radiation quantities and conversion factors. Papers covering archaeological dating are included only if the fundamental measurement method or technique, such as thermoluminescence, has direct application to personal dosimetry measurements. Papers covering the dosimetric aspects of radon or other naturally occurring radioactive materials and low level radiation are included. Animal experiments and ecological sample measurements are not included unless there is a significant relevant content reason.
期刊最新文献
Assessment of occupational radiation exposure during a specific endoscopic retrograde cholangiopancreatography procedure. Evaluating lead-free alternatives for radiation shielding in diagnostic radiology: a case study from a tertiary general hospital in Korea. An electronic energy compensation method for flattening the energy response of SiPM-GGAG:Ce,B based gamma detector. An approach to assess real workload of medical linear accelerators in Sri Lanka. Assessment of foetal dose and occupational exposure for pregnant workers in nuclear medicine using the Taiwanese pregnancy phantom.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1