Eva Pakostova, John Graves, Egle Latvyte, Giovanni Maddalena, Louise Horsfall
{"title":"从锂离子电池活性正极材料中回收钴的新型闭环生物技术。","authors":"Eva Pakostova, John Graves, Egle Latvyte, Giovanni Maddalena, Louise Horsfall","doi":"10.1099/mic.0.001475","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the demand for lithium-ion batteries (LIBs) has been increasing rapidly. Conventional recycling strategies (based on pyro- and hydrometallurgy) are damaging for the environment and more sustainable methods need to be developed. Bioleaching is a promising environmentally friendly approach that uses microorganisms to solubilize metals. However, a bioleaching-based technology has not yet been applied to recover valuable metals from waste LIBs on an industrial scale. A series of experiments was performed to improve metal recovery rates from an active cathode material (LiCoO<sub>2</sub>; LCO). (i) Direct bioleaching of ≤0.5 % LCO with two prokaryotic acidophilic consortia achieved >80 % Co and 90 % Li extraction. Significantly lower metal recovery rates were obtained at 30 °C than at 45 °C. (ii) In contrast, during direct bioleaching of 3 % LCO with consortia adapted to elevated LCO levels, the 30 °C consortium performed significantly better than the 45 °C consortium, solubilizing 73 and 93 % of the Co and Li, respectively, during one-step bioleaching, and 83 and 99 % of the Co and Li, respectively, during a two-step process. (iii) The adapted 30°C consortium was used for indirect leaching in a low-waste closed-loop system (with 10 % LCO). The process involved generation of sulfuric acid in an acid-generating bioreactor (AGB), 2-3 week leaching of LCO with the biogenic acid (pH 0.9), selective precipitation of Co as hydroxide, and recirculation of the metal-free liquor back into the AGB. In total, 58.2 % Co and 100 % Li were solubilized in seven phases, and >99.9 % of the dissolved Co was recovered after each phase as a high-purity Co hydroxide. Additionally, Co nanoparticles were generated from the obtained Co-rich leachates, using <i>Desulfovibrio alaskensis</i>, and Co electrowinning was optimized as an alternative recovery technique, yielding high recovery rates (91.1 and 73.6% on carbon felt and roughened steel, respectively) from bioleachates that contained significantly lower Co concentrations than industrial hydrometallurgical liquors. The closed-loop system was highly dominated by the mixotrophic archaeon <i>Ferroplasma</i> and sulfur-oxidizing bacteria <i>Acidithiobacillus caldus</i> and <i>Acidithiobacillus thiooxidans</i>. The developed system achieved high metal recovery rates and provided high-purity solid products suitable for a battery supply chain, while minimizing waste production and the inhibitory effects of elevated concentrations of dissolved metals on the leaching prokaryotes. The system is suitable for scale-up applications and has the potential to be adapted to different battery chemistries.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318048/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel closed-loop biotechnology for recovery of cobalt from a lithium-ion battery active cathode material.\",\"authors\":\"Eva Pakostova, John Graves, Egle Latvyte, Giovanni Maddalena, Louise Horsfall\",\"doi\":\"10.1099/mic.0.001475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the demand for lithium-ion batteries (LIBs) has been increasing rapidly. Conventional recycling strategies (based on pyro- and hydrometallurgy) are damaging for the environment and more sustainable methods need to be developed. Bioleaching is a promising environmentally friendly approach that uses microorganisms to solubilize metals. However, a bioleaching-based technology has not yet been applied to recover valuable metals from waste LIBs on an industrial scale. A series of experiments was performed to improve metal recovery rates from an active cathode material (LiCoO<sub>2</sub>; LCO). (i) Direct bioleaching of ≤0.5 % LCO with two prokaryotic acidophilic consortia achieved >80 % Co and 90 % Li extraction. Significantly lower metal recovery rates were obtained at 30 °C than at 45 °C. (ii) In contrast, during direct bioleaching of 3 % LCO with consortia adapted to elevated LCO levels, the 30 °C consortium performed significantly better than the 45 °C consortium, solubilizing 73 and 93 % of the Co and Li, respectively, during one-step bioleaching, and 83 and 99 % of the Co and Li, respectively, during a two-step process. (iii) The adapted 30°C consortium was used for indirect leaching in a low-waste closed-loop system (with 10 % LCO). The process involved generation of sulfuric acid in an acid-generating bioreactor (AGB), 2-3 week leaching of LCO with the biogenic acid (pH 0.9), selective precipitation of Co as hydroxide, and recirculation of the metal-free liquor back into the AGB. In total, 58.2 % Co and 100 % Li were solubilized in seven phases, and >99.9 % of the dissolved Co was recovered after each phase as a high-purity Co hydroxide. Additionally, Co nanoparticles were generated from the obtained Co-rich leachates, using <i>Desulfovibrio alaskensis</i>, and Co electrowinning was optimized as an alternative recovery technique, yielding high recovery rates (91.1 and 73.6% on carbon felt and roughened steel, respectively) from bioleachates that contained significantly lower Co concentrations than industrial hydrometallurgical liquors. The closed-loop system was highly dominated by the mixotrophic archaeon <i>Ferroplasma</i> and sulfur-oxidizing bacteria <i>Acidithiobacillus caldus</i> and <i>Acidithiobacillus thiooxidans</i>. The developed system achieved high metal recovery rates and provided high-purity solid products suitable for a battery supply chain, while minimizing waste production and the inhibitory effects of elevated concentrations of dissolved metals on the leaching prokaryotes. The system is suitable for scale-up applications and has the potential to be adapted to different battery chemistries.</p>\",\"PeriodicalId\":49819,\"journal\":{\"name\":\"Microbiology-Sgm\",\"volume\":\"170 7\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318048/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology-Sgm\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001475\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001475","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
A novel closed-loop biotechnology for recovery of cobalt from a lithium-ion battery active cathode material.
In recent years, the demand for lithium-ion batteries (LIBs) has been increasing rapidly. Conventional recycling strategies (based on pyro- and hydrometallurgy) are damaging for the environment and more sustainable methods need to be developed. Bioleaching is a promising environmentally friendly approach that uses microorganisms to solubilize metals. However, a bioleaching-based technology has not yet been applied to recover valuable metals from waste LIBs on an industrial scale. A series of experiments was performed to improve metal recovery rates from an active cathode material (LiCoO2; LCO). (i) Direct bioleaching of ≤0.5 % LCO with two prokaryotic acidophilic consortia achieved >80 % Co and 90 % Li extraction. Significantly lower metal recovery rates were obtained at 30 °C than at 45 °C. (ii) In contrast, during direct bioleaching of 3 % LCO with consortia adapted to elevated LCO levels, the 30 °C consortium performed significantly better than the 45 °C consortium, solubilizing 73 and 93 % of the Co and Li, respectively, during one-step bioleaching, and 83 and 99 % of the Co and Li, respectively, during a two-step process. (iii) The adapted 30°C consortium was used for indirect leaching in a low-waste closed-loop system (with 10 % LCO). The process involved generation of sulfuric acid in an acid-generating bioreactor (AGB), 2-3 week leaching of LCO with the biogenic acid (pH 0.9), selective precipitation of Co as hydroxide, and recirculation of the metal-free liquor back into the AGB. In total, 58.2 % Co and 100 % Li were solubilized in seven phases, and >99.9 % of the dissolved Co was recovered after each phase as a high-purity Co hydroxide. Additionally, Co nanoparticles were generated from the obtained Co-rich leachates, using Desulfovibrio alaskensis, and Co electrowinning was optimized as an alternative recovery technique, yielding high recovery rates (91.1 and 73.6% on carbon felt and roughened steel, respectively) from bioleachates that contained significantly lower Co concentrations than industrial hydrometallurgical liquors. The closed-loop system was highly dominated by the mixotrophic archaeon Ferroplasma and sulfur-oxidizing bacteria Acidithiobacillus caldus and Acidithiobacillus thiooxidans. The developed system achieved high metal recovery rates and provided high-purity solid products suitable for a battery supply chain, while minimizing waste production and the inhibitory effects of elevated concentrations of dissolved metals on the leaching prokaryotes. The system is suitable for scale-up applications and has the potential to be adapted to different battery chemistries.
期刊介绍:
We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms.
Topics include but are not limited to:
Antimicrobials and antimicrobial resistance
Bacteriology and parasitology
Biochemistry and biophysics
Biofilms and biological systems
Biotechnology and bioremediation
Cell biology and signalling
Chemical biology
Cross-disciplinary work
Ecology and environmental microbiology
Food microbiology
Genetics
Host–microbe interactions
Microbial methods and techniques
Microscopy and imaging
Omics, including genomics, proteomics and metabolomics
Physiology and metabolism
Systems biology and synthetic biology
The microbiome.