Taelin Kim, A Yeon Cho, Sang-Wha Lee, Hyun Jong Lee
{"title":"通过荧光介孔纳米载体优化表没食子儿茶素没食子酸酯的输送和脂肪生成抑制作用","authors":"Taelin Kim, A Yeon Cho, Sang-Wha Lee, Hyun Jong Lee","doi":"10.34133/bmr.0053","DOIUrl":null,"url":null,"abstract":"<p><p>Epigallocatechin gallate (EGCG), a naturally occurring compound known for its multiple health benefits including antioxidant, anti-inflammatory, cancer preventive, and weight management effects, faces challenges due to its inherent instability and limited bioavailability. To address these limitations, our study pioneers an investigation into the unique behavior of EGCG, revealing its degradation into epicatechin (EGC) and gallic acid (GA) during the drug delivery process. In this research, we use fluorescent mesoporous silica nanoparticles (FMSNs) as a sophisticated delivery system for EGCG. This innovative approach aims to not only enhance the stability of EGCG but also regulate its sustained release dynamics to enable prolonged cellular activity. To comprehensively evaluate our novel delivery strategy, we performed assays to assess both the antioxidant potential and its impact on lipid inhibition using Oil Red O. The results not only underscore the potential of FMSN-based nanocarriers for efficient EGCG delivery but also reveal groundbreaking insights into its enzymatic degradation, a previously unexplored facet. This research substantially advances our understanding of EGCG's behavior during delivery and offers a promising avenue for improving its therapeutic efficacy and expanding its applications in health management.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0053"},"PeriodicalIF":8.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249910/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimized Epigallocatechin Gallate Delivery and Adipogenesis Inhibition through Fluorescent Mesoporous Nanocarriers.\",\"authors\":\"Taelin Kim, A Yeon Cho, Sang-Wha Lee, Hyun Jong Lee\",\"doi\":\"10.34133/bmr.0053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigallocatechin gallate (EGCG), a naturally occurring compound known for its multiple health benefits including antioxidant, anti-inflammatory, cancer preventive, and weight management effects, faces challenges due to its inherent instability and limited bioavailability. To address these limitations, our study pioneers an investigation into the unique behavior of EGCG, revealing its degradation into epicatechin (EGC) and gallic acid (GA) during the drug delivery process. In this research, we use fluorescent mesoporous silica nanoparticles (FMSNs) as a sophisticated delivery system for EGCG. This innovative approach aims to not only enhance the stability of EGCG but also regulate its sustained release dynamics to enable prolonged cellular activity. To comprehensively evaluate our novel delivery strategy, we performed assays to assess both the antioxidant potential and its impact on lipid inhibition using Oil Red O. The results not only underscore the potential of FMSN-based nanocarriers for efficient EGCG delivery but also reveal groundbreaking insights into its enzymatic degradation, a previously unexplored facet. This research substantially advances our understanding of EGCG's behavior during delivery and offers a promising avenue for improving its therapeutic efficacy and expanding its applications in health management.</p>\",\"PeriodicalId\":93902,\"journal\":{\"name\":\"Biomaterials research\",\"volume\":\"28 \",\"pages\":\"0053\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249910/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmr.0053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Optimized Epigallocatechin Gallate Delivery and Adipogenesis Inhibition through Fluorescent Mesoporous Nanocarriers.
Epigallocatechin gallate (EGCG), a naturally occurring compound known for its multiple health benefits including antioxidant, anti-inflammatory, cancer preventive, and weight management effects, faces challenges due to its inherent instability and limited bioavailability. To address these limitations, our study pioneers an investigation into the unique behavior of EGCG, revealing its degradation into epicatechin (EGC) and gallic acid (GA) during the drug delivery process. In this research, we use fluorescent mesoporous silica nanoparticles (FMSNs) as a sophisticated delivery system for EGCG. This innovative approach aims to not only enhance the stability of EGCG but also regulate its sustained release dynamics to enable prolonged cellular activity. To comprehensively evaluate our novel delivery strategy, we performed assays to assess both the antioxidant potential and its impact on lipid inhibition using Oil Red O. The results not only underscore the potential of FMSN-based nanocarriers for efficient EGCG delivery but also reveal groundbreaking insights into its enzymatic degradation, a previously unexplored facet. This research substantially advances our understanding of EGCG's behavior during delivery and offers a promising avenue for improving its therapeutic efficacy and expanding its applications in health management.